Physiologically Informed Bayesian Analysis of ASL fMRI Data

  • Aina Frau-Pascual
  • Thomas Vincent
  • Jennifer Sloboda
  • Philippe Ciuciu
  • Florence Forbes
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8677)


Arterial Spin Labelling (ASL) functional Magnetic Resonance Imaging (fMRI) data provides a quantitative measure of blood perfusion, that can be correlated to neuronal activation. In contrast to BOLD measure, it is a direct measure of cerebral blood flow. However, ASL data has a lower SNR and resolution so that the recovery of the perfusion response of interest suffers from the contamination by a stronger hemodynamic component in the ASL signal. In this work we consider a model of both hemodynamic and perfusion components within the ASL signal. A physiological link between these two components is analyzed and used for a more accurate estimation of the perfusion response function in particular in the usual ASL low SNR conditions.


Blood Oxygen Level Dependent Arterial Spin Labelling Physiological Model Blood Oxygen Level Dependent Signal Blood Oxygen Level Dependent Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Williams, D., Detre, J., Leigh, J., Koretsky, A.: Magnetic resonance imaging of perfusion using spin inversion of arterial water. Proceedings of the National Academy of Sciences 89(1), 212–216 (1992)CrossRefGoogle Scholar
  2. 2.
    Ogawa, S., Tank, D., Menon, R., Ellermann, J., Kim, S.G., Merkle, H., Ugurbil, K.: Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proceedings of the National Academy of Sciences 89, 5951–5955 (1992)CrossRefGoogle Scholar
  3. 3.
    Hernandez-Garcia, L., Jahanian, H., Rowe, D.B.: Quantitative analysis of arterial spin labeling fmri data using a general linear model. Magnetic Resonance Imaging 28(7), 919–927 (2010)CrossRefGoogle Scholar
  4. 4.
    Mumford, J.A., Hernandez-Garcia, L., Lee, G.R., Nichols, T.E.: Estimation efficiency and statistical power in arterial spin labeling fmri. Neuroimage 33(1), 103–114 (2006)CrossRefGoogle Scholar
  5. 5.
    Vincent, T., Risser, L., Ciuciu, P.: Spatially adaptive mixture modeling for analysis of within-subject fMRI time series. IEEE Transactions on Medical Imaging 29(4), 1059–1074 (2010)CrossRefGoogle Scholar
  6. 6.
    Vincent, T., Warnking, J., Villien, M., Krainik, A., Ciuciu, P., Forbes, F.: Bayesian Joint Detection-Estimation of Cerebral Vasoreactivity from ASL fMRI Data. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013, Part II. LNCS, vol. 8150, pp. 616–624. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  7. 7.
    Vincent, T., Forbes, F., Ciuciu, P.: Bayesian BOLD and perfusion source separation and deconvolution from functional ASL imaging. In: 38th Proc. IEEE ICASSP, Vancouver, Canada, pp. 1003–1007 (May 2013)Google Scholar
  8. 8.
    Friston, K.J., Mechelli, A., Turner, R., Price, C.J.: Nonlinear responses in fMRI: The balloon model, Volterra kernels, and other hemodynamics. Neuroimage 12, 466–477 (2000)Google Scholar
  9. 9.
    Buxton, R.B., Uludağ, K., Dubowitz, D.J., Liu, T.T.: Modeling the hemodynamic response to brain activation. Neuroimage 23, 220 (2004)CrossRefGoogle Scholar
  10. 10.
    Buxton, R.B., Wong, E.C., Frank, L.R.: Dynamics of blood flow and oxygena- tion changes during brain activation: The balloon model. Magnetic Resonance in Medicine 39, 855–864 (1998)CrossRefGoogle Scholar
  11. 11.
    Khalidov, I., Fadili, J., Lazeyras, F., Van De Ville, D., Unser, M.: Activelets: Wavelets for sparse representation of hemodynamic responses. Signal Processing 91(12), 2810–2821 (2011)CrossRefGoogle Scholar
  12. 12.
    Makni, S., Ciuciu, P., Idier, J., Poline, J.B.: Bayesian joint detection-estimation of brain activity using MCMC with a Gamma-Gaussian mixture prior model. In: 31th Proc. IEEE ICASSP, Toulouse, France, vol. V, pp. 1093–1096 (May 2006)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Aina Frau-Pascual
    • 1
    • 3
  • Thomas Vincent
    • 1
  • Jennifer Sloboda
    • 1
  • Philippe Ciuciu
    • 2
    • 3
  • Florence Forbes
    • 1
  1. 1.INRIA, MISTISGrenoble University, LJKGrenobleFrance
  2. 2.CEA/DSV/I2BM NeuroSpin centerGif-sur-YvetteFrance
  3. 3.INRIAParietalOrsayFrance

Personalised recommendations