Advertisement

A Bayesian Approach to Distinguishing Interdigitated Muscles in the Tongue from Limited Diffusion Weighted Imaging

  • Chuyang Ye
  • Aaron Carass
  • Emi Murano
  • Maureen Stone
  • Jerry L. Prince
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8677)

Abstract

Fiber tracking in crossing regions is a well known issue in diffusion tensor imaging (DTI). Multi-tensor models have been proposed to cope with the issue. However, in cases where only a limited number of gradient directions can be acquired, for example in the tongue, the multi-tensor models fail to resolve the crossing correctly due to insufficient information. In this work, we address this challenge by using a fixed tensor basis and incorporating prior directional knowledge. Within a maximum a posteriori (MAP) framework, sparsity of the basis and prior directional knowledge are incorporated in the prior distribution, and data fidelity is encoded in the likelihood term. An objective function can then be obtained and solved using a noise-aware weighted ℓ1-norm minimization. Experiments on a digital phantom and in vivo tongue diffusion data demonstrate that the proposed method is able to resolve crossing fibers with limited gradient directions.

Keywords

Diffusion imaging weighted ℓ1-norm minimization prior directional knowledge 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Basser, P.J., Mattiello, J., LeBihan, D.: MR diffusion tensor spectroscopy and imaging. Biophysical Journal 66(1), 259–267 (1994)CrossRefGoogle Scholar
  2. 2.
    Landman, B.A., Bogovic, J.A., Wan, H., ElShahaby, F.E.Z., Bazin, P.L., Prince, J.L.: Resolution of crossing fibers with constrained compressed sensing using diffusion tensor MRI. NeuroImage 59(3), 2175–2186 (2012)CrossRefGoogle Scholar
  3. 3.
    Behrens, T.E.J., Berg, H.J., Jbabdi, S., Rushworth, M.F.S., Woolrich, M.W.: Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? NeuroImage 34(1), 144–155 (2007)CrossRefGoogle Scholar
  4. 4.
    Peled, S., Friman, O., Jolesz, F., Westin, C.F.: Geometrically constrained two-tensor model for crossing tracts in DWI. Magnetic Resonance Imaging 24(9), 1263–1270 (2006)CrossRefGoogle Scholar
  5. 5.
    Ramirez-Manzanares, A., Rivera, M., Vemuri, B.C., Carney, P., Mareci, T.: Diffusion basis functions decomposition for estimating white matter intravoxel fiber geometry. IEEE Transactions on Medical Imaging 26(8), 1091–1102 (2007)CrossRefGoogle Scholar
  6. 6.
    Candes, E.J., Wakin, M.B., Boyd, S.P.: Enhancing sparsity by reweighted ℓ1 minimization. Journal of Fourier Analysis and Applications 14(5-6), 877–905 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Stejskal, E.O., Tanner, J.E.: Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. The Journal of Chemical Physics 42(1), 288 (1965)CrossRefGoogle Scholar
  8. 8.
    Gudbjartsson, H., Patz, S.: The Rician distribution of noisy MRI data. Magnetic Resonance in Medicine 34(6), 910–914 (1995)CrossRefGoogle Scholar
  9. 9.
    Kim, S.-J., Koh, K., Lustig, M., Boyd, S.: An efficient method for compressed sensing. In: IEEE International Conference on Image Processing, ICIP 2007, vol. 3, pp. 111–117. IEEE (2007)Google Scholar
  10. 10.
    Takemoto, H.: Morphological analyses of the human tongue musculature for three-dimensional modeling. Journal of Speech, Language, and Hearing Research 44(1), 95–107 (2001)CrossRefGoogle Scholar
  11. 11.
    Avants, B.B., Epstein, C.L., Grossman, M., Gee, J.C.: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Medical Image Analysis 12(1), 26–41 (2008)CrossRefGoogle Scholar
  12. 12.
    Tuch, D.S., Reese, T.G., Wiegell, M.R., Makris, N., Belliveau, J.W., Wedeen, V.J.: High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity. Magnetic Resonance in Medicine 48(4), 577–582 (2002)CrossRefGoogle Scholar
  13. 13.
    Wedeen, V.J., Hagmann, P., Tseng, W.Y.I., Reese, T.G., Weisskoff, R.M.: Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging. Magnetic Resonance in Medicine 54(6), 1377–1386 (2005)CrossRefGoogle Scholar
  14. 14.
    Bilgic, B., Setsompop, K., Cohen-Adad, J., Yendiki, A., Wald, L.L., Adalsteinsson, E.: Accelerated diffusion spectrum imaging with compressed sensing using adaptive dictionaries. Magnetic Resonance in Medicine 68(6), 1747–1754 (2012)CrossRefGoogle Scholar
  15. 15.
    Daducci, A., Van De Ville, D., Thiran, J.P., Wiaux, Y.: Reweighted sparse deconvolution for high angular resolution diffusion MRI. arXiv preprint arXiv:1208.2247 (2012)Google Scholar
  16. 16.
    Dietrich, O., Raya, J.G., Reeder, S.B., Ingrisch, M., Reiser, M.F., Schoenberg, S.O.: Influence of multichannel combination, parallel imaging and other reconstruction techniques on MRI noise characteristics. Magnetic Resonance Imaging 26(6), 754–762 (2008)CrossRefGoogle Scholar
  17. 17.
    Alexander, D.C., Pierpaoli, C., Basser, P.J., Gee, J.C.: Spatial transformations of diffusion tensor magnetic resonance images. IEEE Transactions on Medical Imaging 20(11), 1131–1139 (2001)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Chuyang Ye
    • 1
  • Aaron Carass
    • 1
  • Emi Murano
    • 2
  • Maureen Stone
    • 3
  • Jerry L. Prince
    • 1
  1. 1.Department of Electrical and Computer EngineeringJohns Hopkins UniversityBaltimoreUSA
  2. 2.Department of Radiology and Radiological SciencesJohns Hopkins University School of MedicineBaltimoreUSA
  3. 3.Department of Neural and Pain SciencesUniversity of Maryland School of DentistryBaltimoreUSA

Personalised recommendations