Modified Choice Function Heuristic Selection for the Multidimensional Knapsack Problem

  • John H. DrakeEmail author
  • Ender Özcan
  • Edmund K. Burke
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 329)


Hyper-heuristics are a class of high-level search methods used to solve computationally difficult problems, which operate on a search space of low-level heuristics rather than solutions directly. Previous work has shown that selection hyper-heuristics are able to solve many combinatorial optimisation problems, including the multidimensional 0-1 knapsack problem (MKP). The traditional framework for iterative selection hyper-heuristics relies on two key components, a heuristic selection method and a move acceptance criterion. Existing work has shown that a hyper-heuristic using Modified Choice Function heuristic selection can be effective at solving problems in multiple problem domains. Late Acceptance Strategy is a hill climbing metaheuristic strategy often used as a move acceptance criteria in selection hyper-heuristics. This work compares a Modified Choice Function - Late Acceptance Strategy hyper-heuristic to an existing selection hyper-heuristic method from the literature which has previously performed well on standard MKP benchmarks.


Hyper-heuristics Choice Function Heuristic Selection Multidimensional Knapsack Problem Combinatorial Optimization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Burke, E.K., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., Woodward, J.: A Classification of Hyper-heuristic Approaches. In: Handbook of Metaheuristics, 2nd edn., pp. 449–468. Springer (2010)Google Scholar
  2. 2.
    Burke, E.K., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., Qu, R.: Hyper-heuristics: A survey of the state of the art. Journal of the Operational Research Society 64(12), 1695–1724 (2013)CrossRefGoogle Scholar
  3. 3.
    Sörensen, K., Glover, F.: Metaheuristics. In: Encyclopedia of Operations Research and Management Science, pp. 960–970. Springer (2013)Google Scholar
  4. 4.
    Drake, J.H., Kililis, N., Özcan, E.: Generation of vns components with grammatical evolution for vehicle routing. In: Krawiec, K., Moraglio, A., Hu, T., Etaner-Uyar, A.Ş., Hu, B. (eds.) EuroGP 2013. LNCS, vol. 7831, pp. 25–36. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  5. 5.
    Jackson, W.G., Özcan, E., Drake, J.H.: Late acceptance-based selection hyper-heuristics for cross-domain heuristic search. In: Proceedings of the 13th Annual Workshop on Computational Intelligence (UKCI 2013), pp. 228–235. IEEE Press, Surrey (2013)CrossRefGoogle Scholar
  6. 6.
    Fisher, H., Thompson, G.: Probabilistic learning combinations of local job-shop scheduling rules. In: Factory Scheduling Conference, Carnegie Institute of Technology (1961)Google Scholar
  7. 7.
    Burke, E.K., Kendall, G., Soubeiga, E.: A tabu-search hyperheuristic for timetabling and rostering. Journal of Heuristics 9(6), 451–470 (2003)CrossRefGoogle Scholar
  8. 8.
    Gibbs, J., Kendall, G., Özcan, E.: Scheduling english football fixtures over the holiday period using hyper-heuristics. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN XI, Part I. LNCS, vol. 6238, pp. 496–505. Springer, Heidelberg (2010)Google Scholar
  9. 9.
    López-Camacho, E., Terashima-Marín, H., Ross, P.: A hyper-heuristic for solving one and two-dimensional bin packing problems. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2011), pp. 257–258. ACM, Dublin (2011)Google Scholar
  10. 10.
    Kiraz, B., Uyar, A.S., Özcan, E.: Selection hyper-heuristics in dynamic environments. Journal of the Operational Research Society 64(12), 1753–1769 (2013)CrossRefGoogle Scholar
  11. 11.
    Drake, J.H., Özcan, E., Burke, E.K.: Controlling crossover in a selection hyper-heuristic framework. Technical Report No. NOTTCS-TR-SUB-1104181638-4244, School of Computer Science, University of Nottingham (2011)Google Scholar
  12. 12.
    Drake, J.H., Hyde, M., Ibrahim, K., Özcan, E.: A genetic programming hyper-heuristic for the multidimensional knapsack problem. In: Proceedings of the 11th IEEE International Conference on Cybernetic Intelligent Systems (CIS 2012), pp. 76–80. IEEE Press, Limerick (2012)Google Scholar
  13. 13.
    Özcan, E., Bilgin, B., Korkmaz, E.E.: A comprehensive analysis of hyper-heuristics. Intelligent Data Analysis 12(1), 3–23 (2008)Google Scholar
  14. 14.
    Cowling, P., Kendall, G., Soubeiga, E.: A hyperheuristic approach to scheduling a sales summit. In: Burke, E., Erben, W. (eds.) PATAT 2000. LNCS, vol. 2079, pp. 176–190. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  15. 15.
    Bilgin, B., Özcan, E., Korkmaz, E.E.: An experimental study on hyper-heuristics and exam timetabling. In: Burke, E.K., Rudová, H. (eds.) PATAT 2007. LNCS, vol. 3867, pp. 394–412. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  16. 16.
    Özcan, E., Bykov, Y., Birben, M., Burke, E.K.: Examination timetabling using late acceptance hyper-heuristics. In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC 2009), pp. 997–1004. IEEE Press, Trondheim (2009)CrossRefGoogle Scholar
  17. 17.
    Burke, E.K., Kendall, G., Misir, M., Özcan, E.: Monte carlo hyper-heuristics for examination timetabling. Annals of Operations Research 196(1), 73–90 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Drake, J.H., Özcan, E., Burke, E.K.: An improved choice function heuristic selection for cross domain heuristic search. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.) PPSN 2012, Part II. LNCS, vol. 7492, pp. 307–316. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  19. 19.
    Ochoa, G., Hyde, M.: The cross-domain heuristic search challenge (CHeSC 2011) (2011),
  20. 20.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman & Co., New York (1979)zbMATHGoogle Scholar
  21. 21.
    Weingartner, H.M., Ness, D.N.: Methods for the solution of the multidimensional 0/1 knapsack problem. Operations Research 15(1), 83–103 (1967)CrossRefGoogle Scholar
  22. 22.
    Glover, F., Kochenberger, G.: Benchmarks for “the multiple knapsack problem” (n.d.),
  23. 23.
    Burke, E.K., Bykov, Y.: A late acceptance strategy in hill-climbing for exam timetabling problems. In: Proceedings of the International Conference on the Practice and Theory of Automated Timetabling (PATAT 2008), Montreal, Canada (2008) Extended AbstractGoogle Scholar
  24. 24.
    Chu, P.C., Beasley, J.E.: A genetic algorithm for the multidimensional knapsack problem. Journal of Heuristics 4(1), 63–86 (1998)CrossRefzbMATHGoogle Scholar
  25. 25.
    Özcan, E., Basaran, C.: A case study of memetic algorithms for constraint optimization. Soft Computing 13(8-9), 871–882 (2009)CrossRefGoogle Scholar
  26. 26.
    Pirkul, H.: A heuristic solution procedure for the multiconstraint zero-one knapsack problem. Naval Research Logistics 34(2), 161–172 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Freville, A., Plateau, G.: An efficient preprocessing procedure for the multidimensional 0-1 knapsack problem. Discrete Applied Mathematics 49(1-3), 189–212 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Akçay, Y., Li, H., Xu, S.H.: Greedy algorithm for the general multidimensional knapsack problem. Annals of Operations Research 150(1), 17–29 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Volgenant, A., Zoon, J.A.: An improved heuristic for multidimensional 0-1 knapsack problems. Journal of the Operational Research Society 41(1), 963–970 (1990)CrossRefzbMATHGoogle Scholar
  30. 30.
    Magazine, M.J., Oguz, O.: A heuristic algorithm for the multidimensional zero-one knapsack problem. European Journal of Operational Research 16(3), 319–326 (1984)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • John H. Drake
    • 1
    Email author
  • Ender Özcan
    • 1
  • Edmund K. Burke
    • 2
  1. 1.ASAP Research Group, School of Computer ScienceUniversity of NottinghamNottinghamUK
  2. 2.Computing Science and Mathematics, School of Natural SciencesUniversity of StirlingStirlingScotland, UK

Personalised recommendations