FFT Key Recovery for Integral Attack
- 7 Citations
- 1k Downloads
Abstract
An integral attack is one of the most powerful attacks against block ciphers. We propose a new technique for the integral attack called the Fast Fourier Transform (FFT) key recovery. When the integral distinguisher uses N chosen plaintexts and the guessed key is k bits, a straightforward key recovery requires the time complexity of O(N 2 k ). However, the FFT key recovery method requires only the time complexity of O(N + k 2 k ). As a previous result using FFT, at ICISC 2007, Collard et al.proposed that FFT can reduce the time complexity of a linear attack. We show that FFT can also reduce the complexity of the integral attack. Moreover, the estimation of the complexity is very simple. We first show the complexity of the FFT key recovery against three structures, the Even-Mansour scheme, a key-alternating cipher, and the Feistel cipher. As examples of these structures, we show integral attacks against Prøst, CLEFIA, and AES. As a result, 8-round Prøst \(\tilde{P}_{128,K}\) can be attacked with about an approximate time complexity of 280. Moreover, a 6-round AES and 12-round CLEFIA can be attacked with approximate time complexities of 252.6 and 287.5, respectively.
Keywords
Block cipher Integral attack Fast Fourier Transform Fast Walsh-Hadamard Transform Prøst CLEFIA AESPreview
Unable to display preview. Download preview PDF.
References
- 1.ISO/IEC 29192-2. Information technology - Security techniques - Lightweight cryptography - Part 2: Block ciphers, http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=56552
- 2.The 128-bit Blockcipher CLEFIA Security and Performance Evaluations. Sony Corporation (2007)Google Scholar
- 3.Andreeva, E., Bogdanov, A., Dodis, Y., Mennink, B., Steinberger, J.P.: On the Indifferentiability of Key-Alternating Ciphers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 531–550. Springer, Heidelberg (2013)CrossRefGoogle Scholar
- 4.Bogdanov, A., Geng, H., Wang, M., Wen, L., Collard, B.: Zero-Correlation Linear Cryptanalysis with FFT and Improved Attacks on ISO Standards Camellia and CLEFIA. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC 2013. LNCS, vol. 8282, pp. 306–323. Springer, Heidelberg (2013)Google Scholar
- 5.Bogdanov, A., Knudsen, L.R., Leander, G., Standaert, F.-X., Steinberger, J., Tischhauser, E.: Key-Alternating Ciphers in a Provable Setting: Encryption Using a Small Number of Public Permutations. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 45–62. Springer, Heidelberg (2012)CrossRefGoogle Scholar
- 6.Collard, B., Standaert, F.-X., Quisquater, J.-J.: Improving the Time Complexity of Matsui’s Linear Cryptanalysis. In: Nam, K.-H., Rhee, G. (eds.) ICISC 2007. LNCS, vol. 4817, pp. 77–88. Springer, Heidelberg (2007)CrossRefGoogle Scholar
- 7.Daemen, J., Knudsen, L.R., Rijmen, V.: The Block Cipher SQUARE. In: Biham, E. (ed.) FSE 1997. LNCS, vol. 1267, pp. 149–165. Springer, Heidelberg (1997)CrossRefGoogle Scholar
- 8.Diffie, W., Hellman, M.E.: Exhaustive cryptanalysis of the NBS Data Encryption Standard. Computer 10, 74–84 (1977)CrossRefGoogle Scholar
- 9.Dunkelman, O., Keller, N., Shamir, A.: Minimalism in Cryptography: The Even-Mansour Scheme Revisited. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 336–354. Springer, Heidelberg (2012)CrossRefGoogle Scholar
- 10.Even, S., Mansour, Y.: A Construction of a Cipher from a Single Pseudorandom Permutation. J. Cryptology 10(3), 151–162 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
- 11.Ferguson, N., Kelsey, J., Lucks, S., Schneier, B., Stay, M., Wagner, D., Whiting, D.: Improved Cryptanalysis of Rijndael. In: Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp. 213–230. Springer, Heidelberg (2001)CrossRefGoogle Scholar
- 12.Hong, D., et al.: HIGHT: A New Block Cipher Suitable for Low-Resource Device. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 46–59. Springer, Heidelberg (2006)CrossRefGoogle Scholar
- 13.Kavun, E.B., Lauridsen, M.M., Leander, G., Rechberger, C., Schwabe, P., Yalçin, T.: Prøst v1 (2014), Submission to CAESAR competitionGoogle Scholar
- 14.Knudsen, L.R., Wagner, D.: Integral Cryptanalysis. In: Daemen, J., Rijmen, V. (eds.) FSE 2002. LNCS, vol. 2365, pp. 112–127. Springer, Heidelberg (2002)CrossRefGoogle Scholar
- 15.Li, Y., Wu, W., Zhang, L.: Improved Integral Attacks on Reduced-Round CLEFIA Block Cipher. In: Jung, S., Yung, M. (eds.) WISA 2011. LNCS, vol. 7115, pp. 28–39. Springer, Heidelberg (2012)CrossRefGoogle Scholar
- 16.Matsui, M.: Linear Cryptanalysis Method for DES Cipher. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)CrossRefGoogle Scholar
- 17.National Institute of Standards and Technology: Specification for the ADVANCED ENCRYPTION STANDARD (AES). Federal Information Processing Standards Publication 197 (2001)Google Scholar
- 18.Nguyen, P.H., Wei, L., Wang, H., Ling, S.: On Multidimensional Linear Cryptanalysis. In: Steinfeld, R., Hawkes, P. (eds.) ACISP 2010. LNCS, vol. 6168, pp. 37–52. Springer, Heidelberg (2010)CrossRefGoogle Scholar
- 19.Nguyen, P.H., Wu, H., Wang, H.: Improving the Algorithm 2 in Multidimensional Linear Cryptanalysis. In: Parampalli, U., Hawkes, P. (eds.) ACISP 2011. LNCS, vol. 6812, pp. 61–74. Springer, Heidelberg (2011)CrossRefGoogle Scholar
- 20.Sasaki, Y., Wang, L.: Comprehensive Study of Integral Analysis on 22-Round LBlock. In: Kwon, T., Lee, M.-K., Kwon, D. (eds.) ICISC 2012. LNCS, vol. 7839, pp. 156–169. Springer, Heidelberg (2013)CrossRefGoogle Scholar
- 21.Sasaki, Y., Wang, L.: Meet-in-the-Middle Technique for Integral Attacks against Feistel Ciphers. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS, vol. 7707, pp. 234–251. Springer, Heidelberg (2013)CrossRefGoogle Scholar
- 22.Shirai, T., Shibutani, K., Akishita, T., Moriai, S., Iwata, T.: The 128-Bit Blockcipher CLEFIA (Extended Abstract). In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 181–195. Springer, Heidelberg (2007)CrossRefGoogle Scholar
- 23.Wu, W., Zhang, L.: LBlock: A Lightweight Block Cipher. In: Lopez, J., Tsudik, G. (eds.) ACNS 2011. LNCS, vol. 6715, pp. 327–344. Springer, Heidelberg (2011)CrossRefGoogle Scholar