Decentralized Distributed Data Usage Control

  • Florian Kelbert
  • Alexander Pretschner
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8813)


Data usage control provides mechanisms for data owners to remain in control over how their data is used after it is has been shared. Many data usage policies can only be enforced on a global scale, as they refer to data usage events happening within multiple distributed systems: ‘not more than three employees may ever read this document’, or ‘no copy of this document may be modified after it has been archived’. While such global policies can be enforced by a centralized enforcement infrastructure that observes all data usage events in all relevant systems, such a strategy involves heavy communication. We show how the overall coordination overhead can be reduced by deploying a decentralized enforcement infrastructure. Our contributions are: (i) a formal distributed data usage control system model; (ii) formal methods for identifying all systems relevant for evaluating a given policy; (iii) identification of situations in which no coordination between systems is necessary without compromising policy enforcement; (iv) proofs of correctness of (ii, iii).


Virtual Machine Data Usage Usage Control Disjunctive Normal Form Policy Decision Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Park, J., Sandhu, R.: The UCONABC Usage Control Model. ACM Transactions on Information and System Security 7(1), 128–174 (2004)CrossRefGoogle Scholar
  2. 2.
    Pretschner, A., Hilty, M., Basin, D.: Distributed Usage Control. Communications of the ACM 49(9), 39–44 (2006)CrossRefGoogle Scholar
  3. 3.
    Pretschner, A., Lovat, E., Büchler, M.: Representation-Independent Data Usage Control. In: Garcia-Alfaro, J., Navarro-Arribas, G., Cuppens-Boulahia, N., de Capitani di Vimercati, S. (eds.) DPM 2011 and SETOP 2011. LNCS, vol. 7122, pp. 122–140. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  4. 4.
    Harvan, M., Pretschner, A.: State-Based Usage Control Enforcement with Data Flow Tracking using System Call Interposition. In: 3rd International Conference on Network and System Security, pp. 373–380 (2009)Google Scholar
  5. 5.
    Lörscher, M.: Data Usage Control for the Thunderbird Mail Client. Master’s thesis, University of Kaiserslautern, Germany (2012)Google Scholar
  6. 6.
    T. Moses (ed.). eXtensible Access Control Markup Language (XACML) Version 2.0. OASIS Standard, pp. 1–141 (2005)Google Scholar
  7. 7.
    Wüchner, T., Pretschner, A.: Data Loss Prevention Based on Data-Driven Usage Control. In: IEEE 23rd Intl. Symp. Software Reliability Eng., pp. 151–160 (2012)Google Scholar
  8. 8.
    Lazouski, A., Mancini, G., Martinelli, F., Mori, P.: Architecture, Workflows, and Prototype for Stateful Data Usage Control in Cloud. In: IEEE Security and Privacy Workshops (2014)Google Scholar
  9. 9.
    Chadwick, D., Su, L., Otenko, O., Laborde, R.: Coordination between Distributed PDPs. In: 7th IEEE Intl. Works. on Policies for Distr. Systems and Networks (2006)Google Scholar
  10. 10.
    Kelbert, F., Pretschner, A.: Data Usage Control Enforcement in Distributed Systems. In: Proc. 3rd ACM Conference on Data and Application Security and Privacy, pp. 71–82 (2013)Google Scholar
  11. 11.
    Gay, R., Mantel, H., Sprick, B.: Service Automata. In: Barthe, G., Datta, A., Etalle, S. (eds.) FAST 2011. LNCS, vol. 7140, pp. 148–163. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  12. 12.
    Hilty, M., Pretschner, A., Basin, D., Schaefer, C., Walter, T.: A Policy Language for Distributed Usage Control. In: Biskup, J., López, J. (eds.) ESORICS 2007. LNCS, vol. 4734, pp. 531–546. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Pretschner, A., Büchler, M., Harvan, M., Schaefer, C., Walter, T.: Usage Control Enforcement with Data Flow Tracking for X11. In: Proc. 5th International Workshop on Security and Trust Management, pp. 124–137 (2009)Google Scholar
  14. 14.
    Pretschner, A., Hilty, M., Basin, D., Schaefer, C., Walter, T.: Mechanisms for Usage Control. In: Proc. 2008 ACM Symposium on Information, Computer and Communications Security, pp. 240–244 (2008)Google Scholar
  15. 15.
    Kumari, P., Pretschner, A.: Deriving Implementation-level Policies for Usage Control Enforcement. In: Proc. 2nd ACM Conference on Data and Application Security and Privacy, pp. 83–94 (2012)Google Scholar
  16. 16.
    Kumari, P., Pretschner, A.: Model-Based Usage Control Policy Derivation. In: Jürjens, J., Livshits, B., Scandariato, R. (eds.) ESSoS 2013. LNCS, vol. 7781, pp. 58–74. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  17. 17.
    Fromm, A., Kelbert, F., Pretschner, A.: Data Protection in a Cloud-Enabled Smart Grid. In: Cuellar, J. (ed.) SmartGridSec 2012. LNCS, vol. 7823, pp. 96–107. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  18. 18.
    Kloukinas, C., Spanoudakis, G., Mahbub, K.: Estimating Event Lifetimes for Distributed Runtime Verification. In: Proc. 20th Intl. Conf. on Software Eng. (2008)Google Scholar
  19. 19.
    Basin, D., Harvan, M., Klaedtke, F., Zalinescu, E.: Monitoring Data Usage in Distributed Systems. IEEE Trans. on Software Eng. 39(10), 1403–1426 (2013)CrossRefGoogle Scholar
  20. 20.
    Janicke, H., Cau, A., Siewe, F., Zedan, H.: Concurrent Enforcement of Usage Control Policies. In: IEEE Workshop on Policies for Distributed Systems and Networks, pp. 111–118 (2008)Google Scholar
  21. 21.
    Bauer, A., Falcone, Y.: Decentralised LTL Monitoring. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 85–100. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  22. 22.
    Lovat, E., Oudinet, J., Pretschner, A.: On Quantitative Dynamic Data Flow Tracking. In: Proc. 4th ACM Conference on Data and Application Security and Privacy, pp. 211–222 (2014)Google Scholar
  23. 23.
    Lovat, E., Kelbert, F.: Structure Matters – A new Approach for Data Flow Tracking. In: IEEE Security and Privacy Workshops (May 2014)Google Scholar
  24. 24.
    Kelbert, F., Pretschner, A.: Towards a Policy Enforcement Infrastructure for Distributed Usage Control. In: Proc. 17th ACM Symposium on Access Control Models and Technologies, pp. 119–122 (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Florian Kelbert
    • 1
  • Alexander Pretschner
    • 1
  1. 1.Technische Universität MünchenGermany

Personalised recommendations