Advertisement

Private and Dynamic Time-Series Data Aggregation with Trust Relaxation

  • Iraklis Leontiadis
  • Kaoutar Elkhiyaoui
  • Refik Molva
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8813)

Abstract

With the advent of networking applications collecting user data on a massive scale, the privacy of individual users appears to be a major concern. The main challenge is the design of a solution that allows the data analyzer to compute global statistics over the set of individual inputs that are protected by some confidentiality mechanism. Joye et al. [7] recently suggested a solution that allows a centralized party to compute the sum of encrypted inputs collected through a smart metering network. The main shortcomings of this solution are its reliance on a trusted dealer for key distribution and the need for frequent key updates. In this paper we introduce a secure protocol for aggregation of time-series data that is based on the Joye et al. [7] scheme and in which the main shortcomings of the latter, namely, the requirement for key updates and for the trusted dealer are eliminated. Moreover our scheme supports a dynamic group management, whereby as opposed to Joye et al. [7] leave and join operations do not trigger a key update at the users.

Keywords

data aggregation privacy time-series data 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akinyele, J.A., Green, M., Rubin, A.D.: Charm: A tool for rapid cryptographic prototyping, http://www.charm-crypto.com/Main.html
  2. 2.
    Akinyele, J.A., Green, M., Rubin, A.D.: Charm: A framework for rapidly prototyping cryptosystems. IACR Cryptology ePrint Archive, 2011:617 (2011), http://eprint.iacr.org/2011/617.pdf
  3. 3.
    Barthe, G., Danezis, G., Grégoire, B., Kunz, C., Béguelin, S.Z.: Verified computational differential privacy with applications to smart metering. In: CSF, pp. 287–301 (2013)Google Scholar
  4. 4.
    Chan, T.-H.H., Shi, E., Song, D.: Privacy-preserving stream aggregation with fault tolerance. In: Keromytis, A.D. (ed.) FC 2012. LNCS, vol. 7397, pp. 200–214. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  5. 5.
    Erkin, Z., Tsudik, G.: Private computation of spatial and temporal power consumption with smart meters. In: Bao, F., Samarati, P., Zhou, J. (eds.) ACNS 2012. LNCS, vol. 7341, pp. 561–577. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  6. 6.
    Jawurek, M., Kerschbaum, F.: Fault-tolerant privacy-preserving statistics. In: Fischer-Hübner, S., Wright, M. (eds.) PETS 2012. LNCS, vol. 7384, pp. 221–238. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  7. 7.
    Joye, M., Libert, B.: A scalable scheme for privacy-preserving aggregation of time-series data. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 111–125. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  8. 8.
    Kursawe, K., Danezis, G., Kohlweiss, M.: Privacy-friendly aggregation for the smart-grid. In: Fischer-Hübner, S., Hopper, N. (eds.) PETS 2011. LNCS, vol. 6794, pp. 175–191. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. 9.
    Li, Q., Cao, G.: Efficient privacy-preserving stream aggregation in mobile sensing with low aggregation error. In: De Cristofaro, E., Wright, M. (eds.) PETS 2013. LNCS, vol. 7981, pp. 60–81. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  10. 10.
    Lisovich, M., Mulligan, D., Wicker, S.: Inferring personal information from demand-response systems. IEEE Security Privacy 8(1), 11–20 (January-February)Google Scholar
  11. 11.
    Önen, M., Molva, R.: Secure data aggregation with multiple encryption. In: Langendoen, K.G., Voigt, T. (eds.) EWSN 2007. LNCS, vol. 4373, pp. 117–132. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Rastogi, V., Nath, S.: Differentially private aggregation of distributed time-series with transformation and encryption. In: Proceedings of the 2010 ACM SIGMOD International Conference on Management of Data, SIGMOD 2010, pp. 735–746. ACM, New York (2010)Google Scholar
  13. 13.
    Shi, E., Chan, T.-H.H., Rieffel, E.G., Chow, R., Song, D.: Privacy-preserving aggregation of time-series data. In: NDSS (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Iraklis Leontiadis
    • 1
  • Kaoutar Elkhiyaoui
    • 1
  • Refik Molva
    • 1
  1. 1.EURECOMSophia AntipolisFrance

Personalised recommendations