Adaptive Domain-Specific Service Monitoring

  • Arda Ahmet Ünsal
  • Görkem Sazara
  • Barış Aktemur
  • Hasan Sözer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8785)


We propose an adaptive and domain-specific service monitoring approach to detect partner service errors in a cost-effective manner. Hereby, we not only consider generic errors such as file not found or connection timed out, but also take domain-specific errors into account. The detection of each type of error entails a different monitoring cost in terms of the consumed resources. To reduce costs, we adapt the monitoring frequency for each service and for each type of error based on the measured error rates and a cost model. We introduce an industrial case study from the broadcasting and content-delivery domain for improving the user-perceived reliability of Smart TV systems. We demonstrate the effectiveness of our approach with real data collected to be relevant for a commercial TV portal application. We present empirical results regarding the trade-off between monitoring overhead and error detection accuracy. Our results show that each service is usually subject to various types of errors with different error rates and exploiting this variation can reduce monitoring costs by up to 30% with negligible compromise on the quality of monitoring.


Cost Model Frequency Pattern Service Selection Monitoring Frequency Monitoring Cost 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aceto, G., Botta, A., de Donato, W., Pescap, A.: Cloud monitoring: A survey. Computer Networks 57(9), 2093–2115 (2013)CrossRefGoogle Scholar
  2. 2.
    Alcaraz Calero, J., Gutierrez Aguado, J.: Monpaas: An adaptive monitoring platform as a service for cloud computing infrastructures and services. IEEE Transactions on Services Computing (to appear, 2014)Google Scholar
  3. 3. Elastic Compute Cloud (EC2), (accessed in, May 2014)
  4. 4.
    Bai, X., Dong, W., Tsai, W.T., Chen, Y.: WSDL-based automatic test case generation for web services testing. In: Proceedings of the IEEE International Workshop on Service-Oriented Systems, pp. 215–220 (2005)Google Scholar
  5. 5.
    Verheecke, B., Cibrán, M.A., Jonckers, V.: Aspect-Oriented Programming for Dynamic Web Service Monitoring and Selection. In (LJ) Zhang, L.-J., Jeckle, M. (eds.) ECOWS 2004. LNCS, vol. 3250, pp. 15–29. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Clark, K., Warnier, M., Brazier, F.M.T.: Self-adaptive service monitoring. In: Bouchachia, A. (ed.) ICAIS 2011. LNCS, vol. 6943, pp. 119–130. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Clark, K., Warnier, M., Brazier, F.T.: Self-adaptive service monitoring. In: Bouchachia, A. (ed.) ICAIS 2011. LNCS, vol. 6943, pp. 119–130. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. 8.
    Deepak Jeswani, R. K., Ghosh, M.N.: Adaptive monitoring: A hybrid approach for monitoring using probing. In: International Conference on High Performance Computing, HiPC (2010)Google Scholar
  9. 9.
    Duc, B.L., Collet, P., Malenfant, J., Rivierre, N.: A QoI-aware Framework for Adaptive Monitoring. In: 2nd International Conference on Adaptive and Self-adaptive Systems and Applications, pp. 133–141. IEEE (2010)Google Scholar
  10. 10.
    Google: Google Cloud, (accessed in, May 2014)
  11. 11.
    Gülcü, K., Sözer, H., Aktemur, B.: FAS: Introducing a service for avoiding faults in composite services. In: Avgeriou, P. (ed.) SERENE 2012. LNCS, vol. 7527, pp. 106–120. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  12. 12.
    Gulcu, K., Sozer, H., Aktemur, B., Ercan, A.: Fault masking as a service. Software: Practice and Experience 44(7), 835–854 (2014)Google Scholar
  13. 13.
    Jeswani, D., Natu, M., Ghosh, R.: Adaptive monitoring: A framework to adapt passive monitoring using probing. In: Proceedings of the 8th International Conference and Workshop on Systems Virtualiztion Management, pp. 350–356 (2012)Google Scholar
  14. 14.
    Kwon, S., Choi, J.: An agent-based adaptive monitoring system. In: Shi, Z.-Z., Sadananda, R. (eds.) PRIMA 2006. LNCS (LNAI), vol. 4088, pp. 672–677. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Li, W., Yue, H., Valle-Cervantes, S., Qin, S.: Recursive PCA for adaptive process monitoring. Journal of Process Control 10(5), 471–486 (2000)CrossRefGoogle Scholar
  16. 16.
    Liu, A., Li, Q., Huang, L., Xiao, M.: FACTS: A framework for fault-tolerant composition of transactional web services. IEEE Transactions on Services Computing 3(1), 46–59 (2010)CrossRefGoogle Scholar
  17. 17.
    Lo, T.: Trends in the Smart TV industry technical Report (2012), (accessed in May 2014 )
  18. 18.
    Metzger, A., Sammodi, O., Pohl, K., Rzepka, M.: Towards pro-active adaptation with confidence: augmenting service monitoring with online testing. In: Proceedings of the Workshop on Software Engineering for Adaptive and Self-Managing Systems, pp. 20–28 (2010)Google Scholar
  19. 19.
    Microsoft: Windows Azure,, (accessed in, May 2014)
  20. 20.
    Moser, O., Rosenberg, F., Dustdar, S.: Domain-specific service selection for composite services. IEEE Transactions on Software Engineering 38(4), 828–843 (2012)CrossRefGoogle Scholar
  21. 21.
    Puttagunta, V., Kalpakis, K.: Adaptive methods for activity monitoring of streaming data. In: Proceedigns of the 11th International Conference on Machine Learning and Applications, pp. 197–203 (2002)Google Scholar
  22. 22.
    Raimondi, F., Skene, J., Emmerich, W.: Efficient online monitoring of web-service SLAs. In: Proceedings of the 16th ACM SIGSOFT International Symposium on Foundations of Software Engineering, pp. 170–180 (2008)Google Scholar
  23. 23.
    Robinson, W., Purao, S.: Monitoring service systems from a language-action perspective. IEEE Transactions on Services Computing 4(1), 17–30 (2011)CrossRefGoogle Scholar
  24. 24.
    Simmonds, J., Yuan, G., Chechik, M., Nejati, S., O’Farrell, B., Litani, E., Waterhouse, J.: Runtime monitoring of web service conversations. IEEE Transactions on Services Computing 2(3), 223–244 (2009)CrossRefGoogle Scholar
  25. 25.
    Tian, M., Gramm, A., Ritter, H., Schiller, J., Reichert, M.: Efficient selection and monitoring of qos-aware web services with the ws-qos framework. In: WI 2004 Proceedings of the 2004 IEEE/WIC/ACM International Conference on Web Intelligence, pp. 152–158 (2004)Google Scholar
  26. 26.
    de Visser, I.: Analyzing User Perceived Failure Severity in Consumer Electronics Products. Ph.D. thesis, Eindhoven University of Technology, Eindhoven, The Netherlands (2008)Google Scholar
  27. 27.
    Wei, Y., Blake, M.: An agent-based services framework with adaptive monitoring in cloud environments. In: Proceedings of the 21st International Workshop on Enabling Technologies: Infrastructure for Collaborative Enterprises, Toulouse, France, pp. 4–9 (2012)Google Scholar
  28. 28.
    Zheng, Z., Lyu, M.: An adaptive QoS aware fault tolerance strategy for web services. Journal of Empirical Software Engineering 15(4), 323–345 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Arda Ahmet Ünsal
    • 1
  • Görkem Sazara
    • 1
  • Barış Aktemur
    • 2
  • Hasan Sözer
    • 2
  1. 1.VESTEK R&D CorporationIstanbulTurkey
  2. 2.Ozyegin UniversityIstanbulTurkey

Personalised recommendations