Flavour Physics and CP Violation in the Standard Model and Beyond

  • Gustavo Castelo-BrancoEmail author
  • David Emmanuel-Costa
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 161)


We present the invited lectures given at the Third IDPASC School which took place in Santiago de Compostela in January 2013. The students attending the school had very different backgrounds, some of them were doing their PhD in experimental particle physics, others in theory. As a result, and in order to make the lectures useful for most of the students, we focused on basic topics of broad interest, avoiding the more technical aspects of Flavour Physics and CP Violation. We make a brief review of the Standard Model, paying special attention to the generation of fermion masses and mixing, as well as to CP violation. We describe some of the simplest extensions of the SM, emphasising novel flavour aspects which arise in their framework.


Neutrino Oscillation Baryon Asymmetry Neutrino Mass Matrix Leptonic Sector Flavour Change Neutral Current 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We would like to thank the organisers of the Third IDPASC School, specially Carlos Merino, for the very warm hospitality extended to us and for the very nice atmosphere in the School. This work was supported by Fundação para a Ciência e a Tecnologia (FCT, Portugal) through the projects CERN/FP/123580/2011, PTDC/FISNUC/ 0548/2012 and CFTP-FCT Unit 777 (PEst-OE/FIS/UI0777/2013) which are partially funded through POCTI (FEDER). The work of D.E.C. was also supported by Associação do Instituto Superior Técnico para a Investigação e Desenvolvimento (IST-ID).


  1. 1.
    S. Glashow, Partial symmetries of weak interactions. Nucl. Phys. 22, 579–588 (1961)CrossRefGoogle Scholar
  2. 2.
    S. Weinberg, A model of leptons. Phys. Rev. Lett. 19, 1264–1266 (1967)ADSCrossRefGoogle Scholar
  3. 3.
    A. Salam, Weak and electromagnetic interactions. Conf. Proc. C 680519, 367–377 (1968)Google Scholar
  4. 4.
    S. Glashow, J. Iliopoulos, L. Maiani, Weak interactions with Lepton-Hadron symmetry. Phys. Rev. D 2, 1285–1292 (1970)ADSCrossRefGoogle Scholar
  5. 5.
    M. Gaillard, B.W. Lee, Rare decay modes of the K-mesons in Gauge theories. Phys. Rev. D 10, 897 (1974)ADSCrossRefGoogle Scholar
  6. 6.
    S.L. Glashow, S. Weinberg, Natural conservation laws for neutral currents. Phys. Rev. D 15, 1958 (1977)ADSCrossRefGoogle Scholar
  7. 7.
    E. Paschos, Diagonal neutral currents. Phys. Rev. D 15, 1966 (1977)ADSCrossRefGoogle Scholar
  8. 8.
    G. Branco, L. Lavoura, On the addition of vector like quarks to the standard model. Nucl. Phys. B 278, 738 (1986)ADSCrossRefGoogle Scholar
  9. 9.
    F. del Aguila, M. Chase, J. Cortes, Vector like fermion contributions to epsilon-prime. Nucl. Phys. B 271, 61 (1986)ADSCrossRefGoogle Scholar
  10. 10.
    G. Branco, T. Morozumi, P. Parada, M. Rebelo, CP asymmetries in B0 decays in the presence of flavor changing neutral currents. Phys. Rev. D 48, 1167–1175 (1993)ADSCrossRefGoogle Scholar
  11. 11.
    G. Branco, P. Parada, M. Rebelo, D0—anti-D0 mixing in the presence of isosinglet quarks. Phys. Rev. D 52, 4217–4222 (1995). arxiv:hep-ph/9501347
  12. 12.
    T. Morozumi, T. Satou, M. Rebelo, M. Tanimoto, The top quark mass and flavor mixing in a seesaw model of quark masses. Phys. Lett. B 410, 233–240 (1997). arxiv:hep-ph/9703249
  13. 13.
    G. Barenboim, F. Botella, G. Branco, O. Vives, How sensitive to FCNC can B0 CP asymmetries be? Phys. Lett. B 422, 277–286 (1998). arxiv:hep-ph/9709369
  14. 14.
    G. Barenboim, F. Botella, Delta F=2 effective Lagrangian in theories with vector—like fermions. Phys. Lett. B 433, 385–395 (1998). arxiv:hep-ph/9708209
  15. 15.
    P. Minkowski, mu \(\rightarrow \) e gamma at a rate of one out of 1-billion muon decays? Phys. Lett. B 67, 421 (1977)ADSCrossRefGoogle Scholar
  16. 16.
    T. Yanagida, in Horizontal Gauge Symmetry and Masses of Neutrinos. Proceedings of the Workshop on the Baryon Number of the Universe and Unified Theories, Tsukuba, Japan, 13–14 Feb 1979Google Scholar
  17. 17.
    M. Gell-Mann, P. Ramond, R. Slansky, Complex Spinors and Unified Theories, eds. by P. van Nieuwenhuizen, D.Z. Freedman. Supergravity (North Holland Publishing Co, Amsterdam, 1979), p. 315Google Scholar
  18. 18.
    S.L. Glashow, in Quarks and Leptons, Quarks and Leptons, eds. by M. Lévy et al. Cargèse Lectures (Plenum, New York, 1980), p. 687Google Scholar
  19. 19.
    R.N. Mohapatra, G. Senjanovic, Neutrino mass and spontaneous parity nonconservation. Phys. Rev. Lett. 44, 912 (1980)ADSCrossRefGoogle Scholar
  20. 20.
    G. Branco, G. Senjanovic, The question of neutrino mass. Phys. Rev. D 18, 1621 (1978)ADSCrossRefGoogle Scholar
  21. 21.
    G. Branco, J. Silva-Marcos, NonHermitian Yukawa couplings? Phys. Lett. B 331, 390–394 (1994)ADSCrossRefGoogle Scholar
  22. 22.
    G. Branco, D. Emmanuel-Costa, R. Gonzalez Felipe, Texture zeros and weak basis transformations. Phys. Lett. B 477, 147–155 (2000). arxiv:hep-ph/9911418
  23. 23.
    W. Grimus, M. Rebelo, Automorphisms in gauge theories and the definition of CP and P. Phys. Rep. 281, 239–308 (1997). arxiv:hep-ph/9506272
  24. 24.
    G.C. Branco, L. Lavoura, J.P. Silva, CP violation. Int. Ser. Monogr. Phys. 103, 1–536 (1999)Google Scholar
  25. 25.
    J. Bernabéu, G. Branco, M. Gronau, CP restrictions on quark mass matrices. Phys. Lett. B 169, 243–247 (1986)ADSCrossRefGoogle Scholar
  26. 26.
    C. Jarlskog, Commutator of the quark mass matrices in the standard electroweak model and a measure of maximal CP violation. Phys. Rev. Lett. 55, 1039 (1985)ADSCrossRefGoogle Scholar
  27. 27.
    B. Pontecorvo, Mesonium and antimesonium. Sov. Phys. JETP 6, 429 (1957)ADSGoogle Scholar
  28. 28.
    B. Pontecorvo, Inverse beta processes and nonconservation of lepton charge. Sov. Phys. JETP 7, 172–173 (1958)Google Scholar
  29. 29.
    Z. Maki, M. Nakagawa, S. Sakata, Remarks on the unified model of elementary particles. Prog. Theor. Phys. 28, 870–880 (1962)ADSCrossRefzbMATHGoogle Scholar
  30. 30.
    G.C. Branco, M. Rebelo, Building the full PMNS matrix from six independent majorana-type phases. Phys. Rev. D 79, 013001 (2009). arXiv:0809.2799
  31. 31.
    F. Botella, G. Branco, M. Nebot, M. Rebelo, Unitarity triangles and the search for new physics. Nucl. Phys. B 651, 174–190 (2003). arxiv:hep-ph/0206133
  32. 32.
    P.H. Frampton, S.L. Glashow, D. Marfatia, Zeroes of the neutrino mass matrix. Phys Lett. B 536, 79–82 (2002). arxiv:hep-ph/0201008
  33. 33.
    G. Branco, R. Gonzalez Felipe, F. Joaquim, T. Yanagida, Removing ambiguities in the neutrino mass matrix. Phys. Lett. B 562, 265–272 (2003). arxiv:hep-ph/0212341
  34. 34.
    G. Branco, L. Lavoura, M. Rebelo, Majorana neutrinos and CP violation in the leptonic sector. Phys. Lett. B 180, 264 (1986)ADSCrossRefGoogle Scholar
  35. 35.
    F. Botella, G. Branco, M. Nebot, M. Rebelo, New physics and evidence for a complex CKM. Nucl. Phys. B 725, 155–172 (2005). arxiv:hep-ph/0502133
  36. 36.
    J.P. Silva, L. Wolfenstein, Detecting new physics from CP violating phase measurements in B decays. Phys. Rev. D 55, 5331–5333 (1997). arxiv:hep-ph/9610208
  37. 37.
    L. Bento, G.C. Branco, Generation of a K-M phase from spontaneous CP breaking at a high-energy scale. Phys. Lett. B 245, 599–604 (1990)ADSCrossRefGoogle Scholar
  38. 38.
    L. Bento, G.C. Branco, P.A. Parada, A minimal model with natural suppression of strong CP violation. Phys. Lett. B 267, 95–99 (1991)ADSCrossRefGoogle Scholar
  39. 39.
    G. Branco, P. Parada, M. Rebelo, A common origin for all CP violations. arxiv:hep-ph/0307119
  40. 40.
    F. Botella, G. Branco, M. Nebot, The hunt for new physics in the flavour sector with up vector-like quarks. JHEP 1212, 040 (2012). arXiv:1207.4440
  41. 41.
    A. Sakharov, Violation of CP invariance, c asymmetry, and Baryon asymmetry of the universe. Pisma Zh. Eksp. Teor. Fiz. 5, 32–35 (1967)Google Scholar
  42. 42.
    S. Davidson, E. Nardi, Y. Nir, Leptogenesis. Phys. Rep. 466, 105–177 (2008). arXiv:0802.2962
  43. 43.
    G. Branco, R.G. Felipe, F. Joaquim, Leptonic CP violation. Rev. Mod. Phys. 84, 515–565 (2012). arXiv:1111.5332
  44. 44.
    J. Casas, A. Ibarra, Oscillating neutrinos and muon –> e, gamma. Nucl. Phys. B 618, 171–204 (2001). arxiv:hep-ph/0103065
  45. 45.
    M. Rebelo, Leptogenesis without CP violation at low-energies. Phys. Rev. D 67, 013008 (2003). arxiv:hep-ph/0207236
  46. 46.
    G. Branco, R. Gonzalez Felipe, F. Joaquim, I. Masina, M. Rebelo et al., Minimal scenarios for leptogenesis and CP violation. Phys. Rev. D 67, 073025 (2003). arxiv:hep-ph/0211001
  47. 47.
    P. Frampton, S. Glashow, T. Yanagida, Cosmological sign of neutrino CP violation. Phys. Lett. B 548, 119–121 (2002). arxiv:hep-ph/0208157
  48. 48.
    G. Branco, R. Gonzalez Felipe, F. Joaquim, M. Rebelo, Leptogenesis, CP violation and neutrino data: what can we learn? Nucl. Phys. B 640, 202–232 (2002). arxiv:hep-ph/0202030
  49. 49.
    G.C. Branco, T. Morozumi, B. Nobre, M. Rebelo, A bridge between CP violation at low-energies and leptogenesis. Nucl. Phys. B 617, 475–492 (2001). arxiv:hep-ph/0107164

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.CFTPInstituto Superior Técnico, Universidade de LisboaLisboaPortugal
  2. 2.IST–ID and CFTPInstituto Superior Técnico, Universidade de LisboaLisboaPortugal

Personalised recommendations