Advertisement

Nonlinear Plasmon Optics

  • Mario Hentschel
  • Tobias Utikal
  • Bernd Metzger
  • Harald Giessen
  • Markus Lippitz
Chapter
Part of the Nano-Optics and Nanophotonics book series (NON)

Abstract

We study nonlinear optics in plasmonic nanosystems, discuss the role of structural symmetries and the influence of linear optical properties. In particular, we investigate third harmonic generation from dimer nanoantennas and show that the nonlinear optical response, in contrast to common belief, is not governed by gap nonlinearities but fully described by the linear optical properties of the antenna. A simple nonlinear harmonic oscillator model is shown to reproduce all experimental features.

Keywords

Second Harmonic Generation Antenna Array Local Electric Field Third Harmonic Generation Split Ring Resonator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    H. Haken, H.C. Wolf, Molecular Physics and Elements of Quantum Chemistry (Springer, Berlin, 2003)Google Scholar
  2. 2.
    E. Prodan, C. Radloff, N.J. Halas, P. Nordlander, A hybridization model for the plasmon response of complex nanostructures. Science 302, 419–422 (2003)ADSCrossRefGoogle Scholar
  3. 3.
    S.A. Maier et al., Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nat. Mater. 2, 229–232 (2003)Google Scholar
  4. 4.
    N. Liu et al., Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. Nat. Mater. 8, 758–762 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    S. Zhang, D.A. Genov, Y. Wang, M. Liu, X. Zhang, Plasmon-induced transparency in metamaterials. Phys. Rev. Lett. 101, 047401 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    N. Verellen et al., Fano resonances in individual coherent plasmonic nanocavities. Nano Letters 9, 1663–1667 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    B. Luk’yanchuk et al., The Fano resonance in plasmonic nanostructures and metamaterials. Nat. Mater. 9, 707–715 (2010)Google Scholar
  8. 8.
    N.J. Halas, S. Lal, W.-S. Chang, S. Link, P. Nordlander, Plasmons in strongly coupled metallic nanostructures. Chem. Rev. 111, 3913–3961 (2011)CrossRefGoogle Scholar
  9. 9.
    N.A. Mirin, K. Bao, P. Nordlander, Fano resonances in plasmonic nanoparticle aggregates. J. Phys. Chem. A 113, 4028–4034 (2009)CrossRefGoogle Scholar
  10. 10.
    J.A. Fan et al., Self-assembled plasmonic nanoparticle clusters. Science 328, 1135–1138 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    J.L. West, N.J. Halas, Engineered nanomaterials for biophotonics applications: improving sensing, imaging, and therapeutics. Annu. Rev. Biomed. Eng. 5, 285–292 (2003)CrossRefGoogle Scholar
  12. 12.
    K.-S. Lee, M.A. El-Sayed, Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition. J. Phys. Chem. B 110, 19220–19225 (2006)CrossRefGoogle Scholar
  13. 13.
    K.A. Willets, R.P. Van Duyne, Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 58, 267–297 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    P. Englebienne, Use of colloidal gold surface plasmon resonance peak shift to infer affinity constants from the interactions between protein antigens and antibodies specific for single or multiple epitopes. Analyst 123, 1599–1603 (1998)ADSCrossRefGoogle Scholar
  15. 15.
    G. Raschke et al., Biomolecular recognition based on single gold nanoparticle light scattering. Nano Letters 3, 935–938 (2003)ADSCrossRefGoogle Scholar
  16. 16.
    A.D. McFarland, R.P. Van Duyne, Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity. Nano Letters 3, 1057–1062 (2003)ADSCrossRefGoogle Scholar
  17. 17.
    A. Wokaun et al., Surface second-harmonic generation from metal island films and microlithographic structures. Phys. Rev. B 24, 849–856 (1981)ADSCrossRefGoogle Scholar
  18. 18.
    D. Ricard, P. Roussignol, C. Flytzanis, Surface-mediated enhancement of optical phase conjugation in metal colloids. Opt. Lett. 10, 511–513 (1985)ADSCrossRefGoogle Scholar
  19. 19.
    F. Hache, D. Ricard, C. Flytzanis, Optical nonlinearities of small metal particles: surface-mediated resonance and quantum size effects. J. Opt. Soc. Am. B 3, 1647 (1986)ADSCrossRefGoogle Scholar
  20. 20.
    C.K. Chen, T.F. Heinz, D. Ricard, Y.R. Shen, Surface-enhanced second-harmonic generation and Raman scattering. Phys. Rev. B 27, 1965–1979 (1983)ADSCrossRefGoogle Scholar
  21. 21.
    G.T. Boyd, T. Rasing, J.R.R. Leite, Y.R. Shen, Local-field enhancement on rough surfaces of metals, semimetals, and semiconductors with the use of optical second-harmonic generation. Phys. Rev. B 30, 519–526 (1984)ADSCrossRefGoogle Scholar
  22. 22.
    M. Moskovits, Surface roughness and the enhanced intensity of Raman scattering by molecules adsorbed on metals. J. Chem. Phys. 69, 4159–4161 (1978)ADSCrossRefGoogle Scholar
  23. 23.
    S.L. McCall, P.M. Platzman, P.A. Wolff, Surface enhanced Raman scattering. Phys. Lett. A 77, 381–383 (1980)ADSCrossRefGoogle Scholar
  24. 24.
    J. Gersten, A. Nitzan, Electromagnetic theory of enhanced Raman scattering by molecules adsorbed on rough surfaces. J. Chem. Phys. 73, 3023 (1980)ADSCrossRefGoogle Scholar
  25. 25.
    M. Kerker, D.S. Wang, H. Chew, Surface enhanced Raman scattering (SERS) by molecules adsorbed at spherical particles: errata. Appl. Opt. 19, 4159–4174 (1980)ADSCrossRefGoogle Scholar
  26. 26.
    M. Fleischmann, Raman spectra of pyridine absorbed at silver electrode. Chem. Phys. Lett. 26, 163–166 (1974)ADSCrossRefGoogle Scholar
  27. 27.
    J.E. Sipe, R.W. Boyd, Nonlinear susceptibility of composite optical materials in the Maxwell Garnett model. Phys. Rev. A 46, 1614–1629 (1992)ADSCrossRefGoogle Scholar
  28. 28.
    V.M. Shalaev, E.Y. Poliakov, V.A. Markel, Small-particle composites. II. Nonlinear optical properties. Phys. Rev. B: Condens. Matter 53, 2437–2449 (1996)ADSCrossRefGoogle Scholar
  29. 29.
    V.M. Shalaev, Electromagnetic properties of small-particle composites. Phys. Rep. 272, 61–137 (1996)ADSCrossRefGoogle Scholar
  30. 30.
    A.V. Butenko et al., Nonlinear optics of metal fractal clusters. Z. Phys. D: At. Mol. Clusters 17, 283–289 (1990)Google Scholar
  31. 31.
    S.V. Fomichev, S.V. Popruzhenko, D.F. Zaretsky, W. Becker, Laser-induced nonlinear excitation of collective electron motion in a cluster. J. Phys. B: At. Mol. Opt. Phys. 4075, 3817–3834 (2003)ADSCrossRefGoogle Scholar
  32. 32.
    S. Fomichev, S. Popruzhenko, D. Zaretsky, W. Becker, Nonlinear excitation of the Mie resonance in a laser-irradiated cluster. Opt. Express 11, 2433–2439 (2003)ADSCrossRefGoogle Scholar
  33. 33.
    M. Lippitz, M.A. van Dijk, M. Orrit, Third-harmonic generation from single gold nanoparticles. Nano Letters 5, 799–802 (2005)ADSCrossRefGoogle Scholar
  34. 34.
    M.W. Klein, C. Enkrich, M. Wegener, S. Linden, Second-harmonic generation from magnetic metamaterials. Science 313, 502–504 (2006)ADSCrossRefGoogle Scholar
  35. 35.
    B.K. Canfield et al., Local field asymmetry drives second-harmonic generation in non-centrosymmetric nanodimers. Nano Letters 7, 1251–1255 (2007)ADSCrossRefGoogle Scholar
  36. 36.
    T. Zentgraf, A. Christ, J. Kuhl, H. Giessen, Tailoring the ultrafast dephasing of quasiparticles in metallic photonic crystals. Phys. Rev. Lett. 93, 243901 (2004)ADSCrossRefGoogle Scholar
  37. 37.
    B. Lamprecht, A. Leitner, F.R. Aussenegg, SHG studies of plasmon dephasing in nanoparticles. Appl. Phys. B 423, 419–423 (1999)ADSCrossRefGoogle Scholar
  38. 38.
    B.K. Canfield, S. Kujala, K. Jefimovs, M. Kauranen, Linear and nonlinear optical responses influenced by broken symmetry in an array of gold nanoparticles. Opt. Express 12, 419–423 (2004)CrossRefGoogle Scholar
  39. 39.
    B.K. Canfield et al., A macroscopic formalism to describe the second-order nonlinear optical response of nanostructures. J. Opt. A: Pure Appl. Opt. 8, S278–S284 (2006)ADSCrossRefGoogle Scholar
  40. 40.
    M.J. Huttunen et al., Nonlinear chiral imaging of subwavelength-sized twisted-cross gold nanodimers. Opt. Mater. Express 1, 2501–2503 (2011)CrossRefGoogle Scholar
  41. 41.
    V.K. Valev et al., Asymmetric optical second-harmonic generation from chiral G-shaped gold nanostructures. Phys. Rev. Lett. 104, 2–5 (2010)CrossRefGoogle Scholar
  42. 42.
    V.K. Valev et al., The origin of second harmonic generation hotspots in chiral optical metamaterials. Opt. Mater. Express 1, 6233–6241 (2011)CrossRefGoogle Scholar
  43. 43.
    Y. Zhang, N.K. Grady, C. Ayala-Orozco, N.J. Halas, Three-dimensional nanostructures as highly efficient generators of second harmonic light. Nano Letters 11, 5519–5523 (2011)ADSCrossRefGoogle Scholar
  44. 44.
    T. Xu, X. Jiao, G.P. Zhang, S. Blair, Second-harmonic emission from sub-wavelength apertures: effects of aperture symmetry and lattice arrangement. Opt. Express 15, 13894–13906 (2007)ADSCrossRefGoogle Scholar
  45. 45.
    A. Lesuffleur, L.K.S. Kumar, R. Gordon, Enhanced second harmonic generation from nanoscale double-hole arrays in a gold film. Appl. Phys. Lett. 88, 261104 (2006)ADSCrossRefGoogle Scholar
  46. 46.
    A.M. Moran, J. Sung, E.M. Hicks, R.P. Van Duyne, K.G. Spears, Second harmonic excitation spectroscopy of silver nanoparticle arrays. J. Phys. Chem. B 109, 4501–4506 (2005)CrossRefGoogle Scholar
  47. 47.
    T. Hanke et al., Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses. Phys. Rev. Lett. 103, 257404 (2009)ADSCrossRefGoogle Scholar
  48. 48.
    T. Hanke et al., Tailoring spatiotemporal light confinement in single plasmonic nanoantennas. Nano Letters 12, 992–996 (2012)ADSCrossRefGoogle Scholar
  49. 49.
    K.D. Ko et al., Nonlinear optical response from arrays of Au bowtie nanoantennas. Nano Letters 11, 61–65 (2011)ADSCrossRefGoogle Scholar
  50. 50.
    M. Hentschel, T. Utikal, H. Giessen, M. Lippitz, Quantitative modeling of the third harmonic emission spectrum of plasmonic nanoantennas. Nano Letters 12, 3778–3782 (2012)ADSCrossRefGoogle Scholar
  51. 51.
    B. Lamprecht, J.R. Krenn, A. Leitner, F.R. Aussenegg, Resonant and off-resonant light-driven plasmons in metal nanoparticles studied by femtosecond-resolution third-harmonic generation. Phys. Rev. Lett. 83, 4421–4424 (1999)ADSCrossRefGoogle Scholar
  52. 52.
    M. Danckwerts, L. Novotny, Optical frequency mixing at coupled gold nanoparticles. Phys. Rev. Lett. 98, 026104 (2007)ADSCrossRefGoogle Scholar
  53. 53.
    S. Palomba, M. Danckwerts, L. Novotny, Nonlinear plasmonics with gold nanoparticle antennas. J. Opt. A: Pure Appl. Opt. 11, 114030 (2009)ADSCrossRefGoogle Scholar
  54. 54.
    M.W. Klein, M. Wegener, N. Feth, S. Linden, Experiments on second- and third-harmonic generation from magnetic metamaterials. Opt. Express 15, 5238–5247 (2007)ADSCrossRefGoogle Scholar
  55. 55.
    S. Linden et al., Collective effects in second-harmonic generation from split-ring-resonator arrays. Phys. Rev. Lett. 109, 1–5 (2012)Google Scholar
  56. 56.
    N. Feth et al., Second-harmonic generation from complementary split-ring resonators. Opt. Lett. 33, 1975–1977 (2008)ADSCrossRefGoogle Scholar
  57. 57.
    A. Podlipensky, J. Lange, G. Seifert, H. Graener, I. Cravetchi, Second-harmonic generation from ellipsoidal silver nanoparticles embedded in silica glass. Opt. Lett. 28, 716–718 (2003)Google Scholar
  58. 58.
    F.B.P. Niesler et al., Second-harmonic generation from split-ring resonators on a GaAs substrate. Opt. Lett. 34, 1997–1999 (2009)ADSCrossRefGoogle Scholar
  59. 59.
    M. Gentile et al., Investigation of the nonlinear optical properties of metamaterials by second harmonic generation. Appl. Phys. B 105, 149–162 (2011)ADSCrossRefGoogle Scholar
  60. 60.
    M. Klein, T. Tritschler, M. Wegener, S. Linden, Lineshape of harmonic generation by metallic nanoparticles and metallic photonic crystal slabs. Phys. Rev. B 72, 115113 (2005)ADSCrossRefGoogle Scholar
  61. 61.
    T. Utikal et al., Towards the origin of the nonlinear response in hybrid plasmonic systems. Phys. Rev. Lett. 106, 133901 (2011)ADSCrossRefGoogle Scholar
  62. 62.
    T. Utikal, M. Hentschel, H. Giessen, Nonlinear photonics with metallic nanostructures on top of dielectrics and waveguides. Appl. Phys. B 105, 51–65 (2011)ADSCrossRefGoogle Scholar
  63. 63.
    T. Utikal, M.I. Stockman, A.P. Heberle, M. Lippitz, H. Giessen, All-optical control of the ultrafast dynamics of a hybrid plasmonic system. Phys. Rev. Lett. 104, 113903 (2010)ADSCrossRefGoogle Scholar
  64. 64.
    S. Kim et al., High-harmonic generation by resonant plasmon field enhancement. Nature 453, 757–760 (2008)ADSCrossRefGoogle Scholar
  65. 65.
    I. Park et al., Plasmonic generation of ultrashort extreme-ultraviolet light pulses. Nat. Photonics 5, 677–681 (2011)ADSCrossRefGoogle Scholar
  66. 66.
    M. Sivis, M. Duwe, B. Abel, C. Ropers, Nanostructure-enhanced atomic line emission. Nature 485, E1–E3 (2012)ADSCrossRefGoogle Scholar
  67. 67.
    Y. Pu, R. Grange, C.-L. Hsieh, D. Psaltis, Nonlinear optical properties of core-shell nanocavities for enhanced second-harmonic generation. Phys. Rev. Lett. 104, 207402 (2010)ADSCrossRefGoogle Scholar
  68. 68.
    K. Thyagarajan, S. Rivier, A. Lovera, O.J.F. Martin, Enhanced second-harmonic generation from double resonant plasmonic antennae. Opt. Express 20, 12860 (2012)ADSCrossRefGoogle Scholar
  69. 69.
    H. Harutyunyan, G. Volpe, R. Quidant, L. Novotny, Enhancing the nonlinear optical response using multifrequency gold-nanowire antennas. Phys. Rev. Lett. 108, 1–4 (2012)CrossRefGoogle Scholar
  70. 70.
    H. Aouani et al., Multiresonant broadband optical antennas as efficient tunable nanosources of second harmonic light. Nano Letters (2012). doi: 10.1021/nl302665m zbMATHGoogle Scholar
  71. 71.
    M. Navarro-Cia, S.A. Maier, Broadband near-infrared plasmonic nanoantennas for higher harmonic generation. ACS Nano 6, 3537–3544 (2012)CrossRefGoogle Scholar
  72. 72.
    R.R. Birss, Symmetry and Magnetism (North-Holland Publishing Company, Amsterdam, 1966)Google Scholar
  73. 73.
    R.W. Boyd, Nonlinear Optics (Elsevier, Amsterdam, 2008)Google Scholar
  74. 74.
    Y.R. Shen, The Principles of Nonlinear Optics (Wiley-Interscience, Hoboken, 2002)Google Scholar
  75. 75.
    P. Mühlschlegel, H.-J. Eisler, O.J.F. Martin, B. Hecht, D.W. Pohl, Resonant optical antennas. Science 308, 1607–1609 (2005)ADSCrossRefGoogle Scholar
  76. 76.
    L. Novotny, N. van Hulst, Antennas for light. Nat. Photonics 5, 83–90 (2011)ADSCrossRefGoogle Scholar
  77. 77.
    P.J. Schuck, D.P. Fromm, A. Sundaramurthy, G.S. Kino, W.E. Moerner, Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas. Phys. Rev. Lett. 94, 017402 (2005)ADSCrossRefGoogle Scholar
  78. 78.
    P. Biagioni, J.-S. Huang, B. Hecht, Nanoantennas for visible and infrared radiation. Rep. Prog. Phys. 75, 024402 (2012)ADSCrossRefGoogle Scholar
  79. 79.
    H. Fischer, O.J.F. Martin, Engineering the optical response of plasmonic nanoantennas. Opt. Express 16, 9144–9154 (2008)ADSCrossRefGoogle Scholar
  80. 80.
    J. Renger, R. Quidant, N. van Hulst, L. Novotny, Surface-enhanced nonlinear four-wave mixing. Phys. Rev. Lett. 104, 046803 (2010)ADSCrossRefGoogle Scholar
  81. 81.
    J. Renger, R. Quidant, L. Novotny, Enhanced nonlinear response from metal surfaces. Opt. Express 19, 1777–1785 (2011)CrossRefGoogle Scholar
  82. 82.
    P.-Y. Chen, A. Alù, Optical nanoantenna arrays loaded with nonlinear materials. Phys. Rev. B 82, 235405 (2010)ADSCrossRefGoogle Scholar
  83. 83.
    D.K. Polyushkin, E. Hendry, E.K. Stone, W.L. Barnes, THz generation from plasmonic nanoparticle arrays. Nano Letters 11, 4718–4724 (2011)ADSCrossRefGoogle Scholar
  84. 84.
    H. Husu et al., Metamaterials with tailored nonlinear optical response. Nano Letters 12, 673–677 (2012)ADSCrossRefGoogle Scholar
  85. 85.
    J.B. Lassiter et al., Close encounters between two nanoshells. Nano Letters 8, 1212–1218 (2008)ADSCrossRefGoogle Scholar
  86. 86.
    J. Zuloaga, E. Prodan, P. Nordlander, Quantum description of the plasmon resonances of a nanoparticle dimer. Nano Letters 9, 887–891 (2009)ADSCrossRefGoogle Scholar
  87. 87.
    O. Pérez-González et al., Optical spectroscopy of conductive junctions in plasmonic cavities. Nano Letters 10, 3090–3095 (2010)CrossRefGoogle Scholar
  88. 88.
    V. Giannini, A.I. Fernández-Domínguez, S.C. Heck, S.A. Maier, Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters. Chem. Rev. 111, 3888–3912 (2011)CrossRefGoogle Scholar
  89. 89.
    A. Sundaramurthy et al., Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles. Phys. Rev. B 72, 165409 (2005)ADSCrossRefGoogle Scholar
  90. 90.
    Y.S. Kivshar, Nonlinear optics: the next decade. Opt. Express 16, 22126–22128 (2008)ADSCrossRefGoogle Scholar
  91. 91.
    T. Sasaki, Y. Mori, M. Yoshimura, Y.K. Yap, T. Kamimura, Recent development of nonlinear optical borate crystals: key materials for generation of visible and UV light. Mater. Sci. Eng. R: Rep. 30, 1–54 (2000)CrossRefGoogle Scholar
  92. 92.
    R.S. Weis, T.K. Gaylord, Lithium niobate: summary of physical properties and crystal structure. Appl. Phys. A 37, 191–203 (1985)ADSCrossRefGoogle Scholar
  93. 93.
    M.M. Fejer, G.A. Magel, D.H. Jundt, R.L. Byer, Quasi-phase-matched second harmonic generation: tuning and tolerances. IEEE J. Quantum Electron. 28, 2631–2654 (1992)ADSCrossRefGoogle Scholar
  94. 94.
    M. Fiebig et al., Second harmonic generation in the centrosymmetric antiferromagnet NiO. Phys. Rev. Lett. 87, 1–4 (2001)CrossRefGoogle Scholar
  95. 95.
    M. Fiebig, V.V. Pavlov, R.V. Pisarev, Second-harmonic generation for studying electronic and magnetic structures of crystals: review. J. Opt. Soc. Am. B 22, 96–118 (2005)ADSCrossRefGoogle Scholar
  96. 96.
    M. Belkin, S. Han, X. Wei, Y. Shen, Sum-frequency generation in chiral liquids near electronic resonance. Phys. Rev. Lett. 87, 1–4 (2001)CrossRefGoogle Scholar
  97. 97.
    T.F. Heinz, C.K. Chen, D. Ricard, Y.R. Shen, Spectroscopy of molecular monolayers by resonant second-harmonic generation. Phys. Rev. Lett. 48, 478–481 (1982)ADSCrossRefGoogle Scholar
  98. 98.
    D.A. Higgins, M.B. Abrams, S.K. Byerly, R.M. Corn, Resonant second harmonic generation studies of p-nitrophenol adsorption at condensed-phase interfaces. Langmuir 8, 1994–2000 (1992)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Mario Hentschel
    • 1
    • 2
  • Tobias Utikal
    • 1
    • 2
  • Bernd Metzger
    • 1
  • Harald Giessen
    • 1
  • Markus Lippitz
    • 1
    • 2
  1. 1.4th Physics Institute and Research Center SCoPEUniversity of StuttgartStuttgartGermany
  2. 2.Max Planck Institute for Solid State ResearchStuttgartGermany

Personalised recommendations