High Harmonic Generation Assisted by Metal Nanostructures and Nanoparticles

  • Anton Husakou
  • Song-Jin Im
  • Kwang-Hyon Kim
  • Joachim Herrmann
Chapter
Part of the Nano-Optics and Nanophotonics book series (NON)

Abstract

We present a review of our theoretical studies of plasmonic field enhanced high harmonic generation in the vicinity of various metallic nanostructures, of rough metallic surfaces or in composites containing a mixture of a noble gas and metallic nanoparticles. First we present a semiclassical model for plasmon-enhanced high-harmonic generation (HHG) taking into account both the field inhomogeneity in the hot spots and electron absorption by the metal surface. Both effects play an important role in the HHG process and lead to the generation of even harmonics and to an twofold increased cutoff. Further alternative arrangements or mechanism for field enhancement enabling higher HHG efficiencies and a lower damage threshold are studied. We simulate field enhancement and HHG spectra in the vicinity of metallic rough surfaces and predict an increased interaction volume of hot spots in the case of grazing incidence of s-polarized pump pulses with an efficiency of plateau harmonics in the range of 10−7. Finally, we investigate low-intensity high-harmonic generation enabled by the plasmonic electric field enhancement in a mixture of a noble gas with metal nanoparticles. In this case HHG efficiencies up to 10−6 are predicted.

References

  1. 1.
    M. Hentschel et al., Nature 414, 509 (2001)ADSCrossRefGoogle Scholar
  2. 2.
    P.B. Corkum, F. Krausz, Nat. Phys. 3, 381 (2007)CrossRefGoogle Scholar
  3. 3.
    A. Paul et al., Nature 421, 51 (2003)ADSCrossRefGoogle Scholar
  4. 4.
    F. Krausz, M. Ivanov, Rev. Mod. Phys. 81, 163 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    G. Sansone et al., Nature 465, 763 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    M. Lewenstein, P. Balcou, M.Y. Ivanov, A. L’Huillier, P.B. Corkum, Phys. Rev. A 49(3), 2117–2132 (1994)ADSCrossRefGoogle Scholar
  7. 7.
    S. Kim et al., Nature 453, 757 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    S.A. Maier, Plasmonics: Fundamentals and Applications (Springer, Berlin, 2007)Google Scholar
  9. 9.
    S. Nie, S.R. Emory, Science 275, 1102 (1997)CrossRefGoogle Scholar
  10. 10.
    M.I. Stockman, Nonlinear Optical Materials (Springer, New York, 1998)Google Scholar
  11. 11.
    I.-Y. Park et al., Nat. Photonics 5, 678 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    A. Husakou, S.-J. Im, J. Herrmann, Phys. Rev. A 83(4), 043839 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    M.F. Ciappina et al., Phys. Rev. A 85, 033828 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    T. Shaaran et al., Phys. Rev. A 86, 023408 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    I. Yavuz et al., Phys. Rev. A 85, 013416 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    S.L. Stebbings et al., New J. Phys. 13, 073010 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    A. Husakou, F. Kelkensberg, J. Herrmann, M.J.J. Vrakking, Opt. Express 19, 25346 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    J. Choi et al., New J. Phys. 14, 103038 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    M.F. Ciappina et al., Opt. Express 20, 26261 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    I. Yavuz, Phys. Rev. A 87, 053815 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    M.F. Ciappina, T. Shaaran, M. Lewenstein, Ann. Phys. 525, 97 (2013)CrossRefMATHGoogle Scholar
  22. 22.
    B. Fetic, K. Kalajdzic, D.B. Milosevic, Ann. Phys. 525, 107 (2013)CrossRefMATHGoogle Scholar
  23. 23.
    J.A. Perez-Hernandez et al., Phys. Rev. Lett. 110, 053001 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    J. Luo et al., J. Phys. B 46, 145602 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    N. Pfullmann et al., New J. Phys. 15, 093027 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    K. Furusawa et al., Appl. Phys. A 69, S359 (1999)ADSCrossRefGoogle Scholar
  27. 27.
    Farcas et al., Phys. Rev. A 46, R3605 (1992)ADSCrossRefGoogle Scholar
  28. 28.
    F. Banfi et al., Phys. Rev. Lett. 94, 037601 (2005)ADSCrossRefGoogle Scholar
  29. 29.
    V.M. Shalaev, Nonlinear Optics of Random Media: Fractal Composites and Metal-Dielectric Films (Springer, Berlin, 2000)Google Scholar
  30. 30.
    E.Y. Poliakov, V.A. Markel, V.M. Shalaev, R. Botet, Phys. Rev. B 57(23), 14901–14913 (1998)ADSCrossRefGoogle Scholar
  31. 31.
    C.K. Chen, A.R.B. de Castro, Y.R. Shen, Phys. Rev. Lett. 46(2), 145–148 (1981)ADSCrossRefGoogle Scholar
  32. 32.
    K.A. O’Donnell, R. Torre, C.S. West, Phys. Rev. B 55(12), 7985–7992 (1997)ADSCrossRefGoogle Scholar
  33. 33.
    E.M. Kim, S.S. Elovikov, T.V. Murzina, A.A. Nikulin, O.A. Aktsipetrov, M.A. Bader, G. Marowsky, Phys. Rev. Lett. 95(22), 227402 (2005)ADSCrossRefGoogle Scholar
  34. 34.
    K.-H. Kim, A. Husakou, J. Herrmann, Opt. Express 19, 20910–20915 (2011)ADSCrossRefGoogle Scholar
  35. 35.
    P. Meakin, P. Ramanlal, L.M. Sander, R.C. Ball, Phys. Rev. A 34(6), 5091–5103 (1986)ADSCrossRefGoogle Scholar
  36. 36.
    J.M. Kim, J.M. Kosterlitz, Phys. Rev. Lett. 62(19), 2289–2292 (1989)ADSCrossRefGoogle Scholar
  37. 37.
    B.T. Draine, P.J. Flatau, J. Opt. Soc. Am. A 11(4), 1491–1499 (1994)ADSCrossRefGoogle Scholar
  38. 38.
    V.M. Shalaev, R. Botet, J. Mercer, E.B. Stechel, Phys. Rev. B 54(11), 8235–8242 (1996)ADSCrossRefGoogle Scholar
  39. 39.
    J.C.-E. Sten, J. Electrostat. 64, 647–654 (2005)Google Scholar
  40. 40.
    A. Husakou, J. Herrmann, Opt. Express 17, 12481–12492 (2009)ADSCrossRefGoogle Scholar
  41. 41.
    H.R. Reiss, Phys. Rev. A 22, 1786–1813 (1980)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Anton Husakou
    • 1
  • Song-Jin Im
    • 1
  • Kwang-Hyon Kim
    • 1
  • Joachim Herrmann
    • 1
  1. 1.Max-Born-Institut für Nichtlineare Optik und KurzzeitspektroskopieBerlinGermany

Personalised recommendations