Advertisement

Exploring the Impact of Different Cost Heuristics in the Allocation of Safety Integrity Levels

  • Luís Silva Azevedo
  • David Parker
  • Yiannis Papadopoulos
  • Martin Walker
  • Ioannis Sorokos
  • Rui Esteves Araújo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8822)

Abstract

Contemporary safety standards prescribe processes in which system safety requirements, captured early and expressed in the form of Safety Integrity Levels (SILs), are iteratively allocated to architectural elements. Different SILs reflect different requirements stringencies and consequently different development costs. Therefore, the allocation of safety requirements is not a simple problem of applying an allocation "algebra" as treated by most standards; it is a complex optimisation problem, one of finding a strategy that minimises cost whilst meeting safety requirements. One difficulty is the lack of a commonly agreed heuristic for how costs increase between SILs. In this paper, we define this important problem; then we take the example of an automotive system and using an automated approach show that different cost heuristics lead to different optimal SIL allocations. Without automation it would have been impossible to explore the vast space of allocations and to discuss the subtleties involved in this problem.

Keywords

Dependability Analysis Requirements Analysis Functional Safety SIL Allocation and Decomposition Cost Optimisation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ward, D.D., Crozier, S.E.: The uses and abuses of ASIL decomposition in ISO 26262. In: 7th IET International Conference on System Safety, incorporating the Cyber Security Conference (2012)Google Scholar
  2. 2.
  3. 3.
    Papadopoulos, Y., Walker, M., Reiser, M.-O., Weber, M., Chen, D., Törngren, S.D., Abele, A., Stappert, F., Lönn, H., Berntsson, L., Johansson, R., Tagliabo, F., Torchiaro, S., Sandberg, A.: Automatic Allocation of Safety Integrity Levels. In: Proceedings of the 1st Workshop on Critical Automotive applications: Robustness and Safety (CARS 2010), Valencia, Spain, April 27, pp. 7–10. ACM, New York (2010), doi:10.1145/1772643.1772646, ISBN: 978-1-60558-915-2Google Scholar
  4. 4.
    Azevedo, L.S., Parker, D., Walker, M., Papadopoulos, Y., Araujo, R.E.: Assisted Assignment of Automotive Safety Requirements. IEEE Software 31, 62–68 (2014)CrossRefGoogle Scholar
  5. 5.
    Papadopoulos, Y., Walker, M., Parker, D., Rüde, E., Hamann, R., Uhlig, A., Grätz, U., Lien, R.: Engineering Failure Analysis & Design Optimisation with HiP-HOPS. Journal of Engineering Failure Analysis 18(2), 590–608 (2011) doi:10.1016/j.engfailanal.2010.09.025, ISSN: 1350 6307CrossRefGoogle Scholar
  6. 6.
    Mader, R., Armengaud, E., Leitner, A., Steger, C.: Automatic and Optimal Allocation of Safety Integrity Levels. In: Proceedings of the Reliability and Maintainability Symposium (RAMS 2012), Reno, NV, USA, January 23-26, pp. 1–6 (2012), doi:10.1109/RAMS.2012.6175431, ISBN: 978-1-4577-1849-6Google Scholar
  7. 7.
    Bieber, P., Delmas, R., Seguin, C.: DALculus – theory and tool for development assurance level allocation. In: Flammini, F., Bologna, S., Vittorini, V. (eds.) SAFECOMP 2011. LNCS, vol. 6894, pp. 43–56. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. 8.
    Parker, D., Walker, M., Azevedo, L.S., Papadopoulos, Y., Araújo, R.E.: Automatic decomposition and allocation of safety integrity levels using a penalty-based genetic algorithm. In: Ali, M., Bosse, T., Hindriks, K.V., Hoogendoorn, M., Jonker, C.M., Treur, J. (eds.) IEA/AIE 2013. LNCS, vol. 7906, pp. 449–459. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  9. 9.
    Azevedo L.S., Parker D., Walker M., Papadopoulos Y., and Araujo R. E.: Automatic Decomposition of Safety Integrity Levels: Optimisation by Tabu Search. 2nd Workshop on Critical Automotive applications: Robustness & Safety (CARS), at the 32nd International Conference on Computer Safety, Reliability, and Security (SAFECOMP 2013), Toulouse, France (2013) Google Scholar
  10. 10.
    Hansen, P., Lih, K.-W.: Heuristic reliability optimization by tabu search. Annals of Operations Research (63), 321–336 (1996)Google Scholar
  11. 11.
    Azevedo, L.P.: Hybrid Braking System for Electrical Vehicles: Functional Safety, M.Sc. thesis, Dept. Elect. Eng., Porto Univ., Porto, Portugal (2012)Google Scholar
  12. 12.
    de Castro, R., Araújo, R.E., Freitas, D.: Hybrid ABS with Electric motor and friction Brakes. Presented at the IAVSD2011 - 22nd International Symposium on Dynamics of Vehicles on Roads and Tracks, Manchester, UK (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Luís Silva Azevedo
    • 1
  • David Parker
    • 1
  • Yiannis Papadopoulos
    • 1
  • Martin Walker
    • 1
  • Ioannis Sorokos
    • 1
  • Rui Esteves Araújo
    • 2
  1. 1.Department of Computer ScienceUniversity of HullHullUK
  2. 2.INESC TEC, Faculdade de EngenhariaUniversidade do PortoPortugal

Personalised recommendations