Creating Quantitative Goal Models: Governmental Experience

  • Okhaide Akhigbe
  • Mohammad Alhaj
  • Daniel Amyot
  • Omar Badreddin
  • Edna Braun
  • Nick Cartwright
  • Gregory Richards
  • Gunter Mussbacher
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8824)


Precision in goal models can be enhanced using quantitative rather than qualitative scales. Selecting appropriate values is however often difficult, especially when groups of stakeholders are involved. This paper identifies and compares generic and domain-specific group decision approaches for selecting quantitative values in goal models. It then reports on the use of two approaches targeting quantitative contributions, actor importance, and indicator definitions in the Goal-oriented Requirement Language. The approaches have been deployed in two independent branches of the Canadian government.


AHP Compliance Contributions Decision Making Enterprise Architecture GRL Indicators Quantitative Values 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akhigbe, O.S.: Business Intelligence - Enabled Adaptive Enterprise Architecture. M.Sc. thesis, Systems Science, University of Ottawa (2014),
  2. 2.
    Ahn, B.S.: Compatible weighting method with rank order centroid: Maximum entropy ordered weighted averaging approach. EJOR 212(3), 552–559 (2011)CrossRefzbMATHGoogle Scholar
  3. 3.
    Amyot, D., Ghanavati, S., Horkoff, J., Mussbacher, G., Peyton, L., Yu, E.: Evaluating Goal Models within the Goal-oriented Requirement Language. International Journal of Intelligent Systems 25(8), 841–877 (2010)CrossRefGoogle Scholar
  4. 4.
    Amyot, D., Mussbacher, G.: User Requirements Notation: The First Ten Years, The Next Ten Years. Journal of Software 6(5), 747–768 (2011)CrossRefGoogle Scholar
  5. 5.
    Amyot, D., et al.: Towards Advanced Goal Model Analysis with jUCMNav. In: Castano, S., Vassiliadis, P., Lakshmanan, L.V.S., Lee, M.L. (eds.) ER 2012 Workshops. LNCS, vol. 7518, pp. 201–210. Springer, Heidelberg (2012)Google Scholar
  6. 6.
    Badreddin, O., et al.: Regulation-Based Dimensional Modeling for Regulatory Intelligence. In: RELAW 2013, pp. 1–10. IEEE CS (2013)Google Scholar
  7. 7.
    Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: Tropos: An Agent-Oriented Software Development Methodology. Autonomous Agents and Multi-Agent Systems 8(3), 203–236 (2004)CrossRefGoogle Scholar
  8. 8.
    Coglianese, C., Lazer, D.: Management‐Based Regulation: Prescribing Private Management to Achieve Public Goals. Law & Society Review 37(4), 691–730 (2003)CrossRefGoogle Scholar
  9. 9.
    Hassine, J., Amyot, D.: GRL Model Validation: A Statistical Approach. In: Haugen, Ø., Reed, R., Gotzhein, R. (eds.) SAM 2012. LNCS, vol. 7744, pp. 212–228. Springer, Heidelberg (2013)Google Scholar
  10. 10.
    Horkoff, J., Barone, D., Jiang, L., Yu, E., Amyot, D., Borgida, A., Mylopoulos, J.: Strategic Business Modeling: Representation and Reasoning. Software & Systems Modeling 13(3), 1015–1041 (2012)CrossRefGoogle Scholar
  11. 11.
    International Telecommunication Union, Recommendation Z.151 (10/12), User Requirements Notation (URN) – Language Definition. Geneva, Switzerland (2012)Google Scholar
  12. 12.
    Jureta, I., Faulkner, S., Schobbens, P.-Y.: Clear justification of modeling decisions for goal-oriented requirements engineering. Requirement Engineering 13(2), 87–115 (2008)CrossRefGoogle Scholar
  13. 13.
    Kassab, M.: An integrated approach of AHP and NFRs framework. In: Seventh Int. Conf. on Research Challenges in Information Science (RCIS), pp. 1–8. IEEE CS (2013)Google Scholar
  14. 14.
    Letier, E., van Lamsweerde, A.: Reasoning about partial goal satisfaction for requirements and design engineering. Software Engineering Notes 29(6), 53–62 (2004)CrossRefGoogle Scholar
  15. 15.
    Liaskos, S., Hamidi, S., Jalman, R.: Qualitative vs. Quantitative Contribution Labels in Goal Models: Setting an Experimental Agenda. In: iStar 2013. CEUR-WS, Vol. 978, pp. 37–42 (2013)Google Scholar
  16. 16.
    Liaskos, S., Jalman, R., Aranda, J.: On eliciting contribution measures in goal models. In: 20th Int. Requirements Engineering Conference (RE), pp. 221–230. IEEE CS (2012)Google Scholar
  17. 17.
    Lilja, K.K., Laakso, K., Palomki, J.: Using the Delphi method. In: Technology Management in the Energy Smart World (PICMET), pp. 1–10. IEEE CS (2011)Google Scholar
  18. 18.
    Linstone, H.A., Turoff, M.: The Delphi method. Addison-Wesley (1975)Google Scholar
  19. 19.
    Maté, A., Trujillo, J., Franch, X.: Adding semantic modules to improve goal-oriented analysis of data warehouses using I-star. JSS 88, 102–111 (2014)Google Scholar
  20. 20.
    Moody, D.L., Heymans, P., Matulevičius, R.: Visual syntax does matter: improving the cognitive effectiveness of the i* visual notation. Req. Eng. 15(2), 141–175 (2010)CrossRefGoogle Scholar
  21. 21.
    Munro, S., Liaskos, S., Aranda, J.: The Mysteries of Goal Decomposition. In: iStar 2011. CEUR-WS, vol. 766, pp. 49–54 (2011)Google Scholar
  22. 22.
    Mussbacher, G., Amyot, D., Heymans, P.: Eight Deadly Sins of GRL. In: iStar 2011. CEUR-WS, vol. 766, pp. 2–7 (2011)Google Scholar
  23. 23.
    Saaty, T.L.: A scaling method for priorities in hierarchical structures. Journal of Mathematical Psychology 15(3), 234–281 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Tawhid, R., et al.: Towards Outcome-Based Regulatory Compliance in Aviation Security. In: 20th Int. Requirements Engineering Conference (RE), pp. 267–272. IEEE CS (2012)Google Scholar
  25. 25.
    van Lamsweerde, A.: Requirements Engineering: From System Goals to UML Models to Software Specifications. Wiley (2009)Google Scholar
  26. 26.
    Velasquez, M., Hester, P.T.: An Analysis of Multi-Criteria Decision Making Methods. International Journal of Operations Research 10(2), 56–66 (2013)MathSciNetGoogle Scholar
  27. 27.
    Vinay, S., Aithal, S., Sudhakara, G.: A Quantitative Approach Using Goal-Oriented Requirements Engineering Methodology and Analytic Hierarchy Process in Selecting the Best Alternative. In: Aswatha Kumar, M., et al. (eds.) Proceedings of ICAdC. AISC, vol. 174, pp. 441–454. Springer, Heidelberg (2012)Google Scholar
  28. 28.
    Yu, E.: Towards Modelling and Reasoning Support for Early-Phase Requirements Engineering. In: 3rd Int. Symp. on Requirements Engineering, pp. 226–235. IEEE CS (1997)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Okhaide Akhigbe
    • 1
  • Mohammad Alhaj
    • 1
  • Daniel Amyot
    • 1
  • Omar Badreddin
    • 2
  • Edna Braun
    • 1
  • Nick Cartwright
    • 1
  • Gregory Richards
    • 1
  • Gunter Mussbacher
    • 3
  1. 1.University of OttawaCanada
  2. 2.Northern Arizona UniversityUSA
  3. 3.McGill UniversityCanada

Personalised recommendations