New Perspectives on the History of Life Sciences and Agriculture pp 439-458

Part of the Archimedes book series (ARIM, volume 40) | Cite as

Genetics and “Breeding as a Science”: Kihara Hitoshi and the Development of Genetics in Japan in the First Half of the Twentieth Century

Chapter

Abstract

Through the career of Kihara Hitoshi, a prominent plant geneticist in Japan, I show that genetics in Japan developed by maintaining a close connection with agriculture throughout the first half of the twentieth century. To exploit the socioeconomic context that valued applied science, Kihara gradually made the practical aspect of his projects more explicit and consequently created projects that were both basic and applied science. These projects not only allowed his group to expand successfully during wartime but also influenced the group’s scientific approach. To gain full understanding of an organism, investigators took a multidisciplinary approach beyond genetics, an approach similar to what the Russian geneticist Nikolai Vavilov described in advocating “breeding as a science.” Genetics, being placed within “breeding as a science,” was also affected, and Kihara began advocating physiological genetics, along the lines advanced by German geneticist Richard Goldschmidt. The story of Kihara’s career reveals how the national emphasis on agriculture had a significant impact on the disciplinary growth of genetics in Japan as well as on Japanese biologists’ approach to organisms and genes.

Keywords

Richard Goldschmidt Japanese genetics Hitoshi Kihara Physiological genetics Plant genetics Nikolai Vavilov 

References

  1. Abe, Ayao. 1939. Meiji no makkigoro nihon iden kenkyū no omoide (Recollections about genetic research in Japan around the end of the Meiji period). N.I.G. danwashitsu 5:25–27.Google Scholar
  2. Beadle, G. W., and Boris Ephrussi. 1936. The differentiation of eye pigments in Drosophila as studied by transplantation. Genetics 21:225–247.Google Scholar
  3. Beadle, G. W., and E. L. Tatum. 1941. Experimental control of development and differentiation: Genetic control of developmental reactions. American Naturalist 75 (757): 107–116.CrossRefGoogle Scholar
  4. Blakeslee, A. F., and A. G. Avery. 1937. Methods of inducing doubling of chromosomes in plants. Journal of Heredity 28:393–411.Google Scholar
  5. Caspari, Ernst. 1933. Uber die Wirkung eines pleiotropen Gens bei der Mehlmotte Ephestia kühniella Zeller. Wilhelm Roux’ Archiv für Entwicklungsmechanik der Organismen 130:353–381.CrossRefGoogle Scholar
  6. Crow, James F. 1994. Hitoshi Kihara, Japan’s pioneer geneticist. Genetics 137:891–894.Google Scholar
  7. Curry, Helen Anne. 2010. Making marigolds: Colchicine, mutation breeding and ornamental horticulture, 1937–1950. In Making mutations: Objects, practices, contexts, ed. Luis Campos and Alexander von Schwerin, Preprint 393, pp. 259–284. Berlin: Max Planck Institute for the History of Science.Google Scholar
  8. Dobzhansky, Theodosius. 1937. Genetics and the origin of species. New York: Columbia University Press.Google Scholar
  9. Eigsti, O. J. 1957. Induced polyploidy. American Journal of Botany 44:272–279.CrossRefGoogle Scholar
  10. Fujihara, Tatsushi. 2012. Ine no daitōa kyōeiken: Teikoku nihon no “Midori no kakumei” (The Greater East Asia Co-Prosperity Sphere of rice: Imperial Japan's “Green Revolution”). Tokyo: Yoshikawa kōbunkan.Google Scholar
  11. Fujii, Kenjiro. 1918. Tōdai rika daigaku shokubutsugakka ni okeru idengaku kōza no shinsetsu: Nomura-ke no bikyo (Establishment of the new genetics laboratory at the Department of Botany, Science College of Tokyo Imperial University: Commendable contribution of the Nomura family). Botanical Magazine 32:277–278.Google Scholar
  12. Fujii, Kenjiro. 1920. On the conceptions of ‘id’ and the question of its transmutability. Botanical Magazine 34:99–125. [in Japanese].CrossRefGoogle Scholar
  13. Gilbert, Scott F. 1988. Cellular politics: Ernest Everett Just, Richard B. Goldschmidt, and the attempt to reconcile embryology and genetics. In The American development of biology, ed. R. Rainger, K. R. Benson, and J. Maienschein, pp. 311–346. New Brunswick: Rutgers University Press.Google Scholar
  14. Goldschmidt, Richard B. 1938. Physiological genetics. New York: McGraw-Hill.Google Scholar
  15. Harwood, Jonathan. 1993. Styles of scientific thought: The German genetics community, 1900–1933. Chicago: University of Chicago Press.Google Scholar
  16. Hoshino, Yuzo. 1902. Kanseishi ni okeru ryōsei no bunkai ni tsuite. Sapporo nōgakkaihō 3:106–113.Google Scholar
  17. Iida, Kaori. 2010. Practice and politics in Japanese science: Hitoshi Kihara and the formation of a genetics discipline. Journal of the History of Biology 43:529–570.CrossRefGoogle Scholar
  18. Inoue, Katsuo. 2006. Sapporo nōgakko to shokumingaku no tanjō. (The birth of Sapporo Agricultural College and colonial study). In ‘Teikoku’ nihon no gakuchi. (Knowledge of ‘Imperial’ Japan), ed. Tetsuya Sakai, et al., vol. 1, pp. 11–41. Tokyo: Iwanami shoten.Google Scholar
  19. Ishidate, Mieko. 1980. Hideo Kikkawa’s works on eye pigment in Bombyx (1937–1950). Kagakushi kenkyū (Japanese journal of history of science) (series II) 19:129–139. [in Japanese].Google Scholar
  20. Kihara, Hitoshi. 1930. Genomanalyse bei Triticum und Aegilops. Cytologia 1:263–284.CrossRefGoogle Scholar
  21. Kihara, Hitoshi. 1942a. Rakuseishiki (Inauguration ceremony). Seiken zihō 1:103–104.Google Scholar
  22. Kihara, Hitoshi. 1942b. Aisatsu (Speech). Seiken zihō 1:107–109.Google Scholar
  23. Kihara, Hitoshi. 1944. Futsū komugi no ichisosen taru DD-bunsekishu no hakken, yohō. (The discovery of a variety with DD, an ancestor of common wheat, preview). Nōgyō oyobi engei (Agriculture and horticulture) 19 (10): 13–14.Google Scholar
  24. Kihara, Hitoshi. 1951. Komugi: Ichi-seibutsugakusha no kiroku (Wheat: A record of one biologist). Tokyo: Chūō kōron.Google Scholar
  25. Kikkawa, Hideo. 1941. Mechanism of pigment formation in Bombyx and Drosophila. Genetics 26:587–607.Google Scholar
  26. Kikkawa, Hideo. 1943. Konchū no toriputofan taisha o meguru shomondai (2). (Various problems on tryptophan metabolism in insects (2)). Kagaku 13:319–325.Google Scholar
  27. Kikkawa, Hideo. 1947. Idenshi no honshitsu to sayō. (The substance and function of genes). Kagaku 17:12–16.Google Scholar
  28. Kimmelman, Barbara A. 1987. A Progressive Era discipline: Genetics at American agricultural colleges and experiment stations, 1900–1920. Ph.D. Diss., University of Pennsylvania.Google Scholar
  29. Kimmelman, Barbara A. 2006. Mr. Blakeslee builds his dream house: Agricultural institutions, genetics, and careers 1900–1915. Journal of the History of Biology 39:240–280.Google Scholar
  30. Kimura, Motoo. 1986. Kihara Hitoshi hakushi o shinobu. (Remembering Dr. Kihara Hitoshi). Kagaku 56:725–728.Google Scholar
  31. Kingsland, Sharon E. 2009. Frits Went’s atomic age greenhouse: The changing labscape on the lab-field border. Journal of the History of Biology 42:289–324.CrossRefGoogle Scholar
  32. Kokuritsu idengaku kenkyūjo, ed. 1958. Kokuritsu idengaku kenkyūjo nenpō (National Institute of Genetics Annual Report). vol. 8, pp. 131–132.Google Scholar
  33. Kokuritsu idengaku kenkyūjo, ed. 1952–1953. Kokuritsu idengaku kenkyūjo nenpō (National Institute of Genetics Annual Report). vol. 2–3, pp. 44–52; 50–60Google Scholar
  34. Kühn, Alfred, E. Caspari and E. Plagge. 1935. Uber hormonale Genwirkungen bei Ephestia kühniella Z. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse 2:1–29.Google Scholar
  35. Kuwada, Yoshinari. 1910. A cytological study of Oryza sativa L. Botanical Magazine 24:267–281.CrossRefGoogle Scholar
  36. Kyoto Imperial University, ed. 1943. Kyoto teikoku daigakushi. (The History of Kyoto Imperial University). Kyoto: Kyoto Imperial University.Google Scholar
  37. Kyoto daigaku nōgakubu 70-nenshi henshū iinkai, ed. 1993. Kyoto daigaku nōgakubu 70-nenshi. (The 70-year history of the Faculty of Agriculture of Kyoto University). Kyoto: Kyoto daigaku nōgakubu.Google Scholar
  38. Majewski, Tomasz. 1989. Flora Lilienfeldówna (1886–1977). Wiadomości Botaniczne 33:101–108.Google Scholar
  39. Matsubara, Yoko. 2000. Menderu idengaku no juyō: Nihon no baai. (Reception of Mendelian genetics: The case of Japan). Seibutsugakushi kenkyū 66:89–94.Google Scholar
  40. Matsubara, Yoko. 2004. The reception of Mendelism in Japan, 1900–1920. Historia Scientiarum 13:232–240.Google Scholar
  41. McFadden, E. S., and E. R. Sears. 1944. The artificial synthesis of Triticum spelta. Records of the Genetics Society of America 13:26–27.Google Scholar
  42. Moriwaki, Yasuko. 2010. Toyama Kametarō to meijiki no sanshigyō ni okeru kaiko no ‘shurui kairyō’. (K. Toyama and silkworm breeding in Japan, from 1891 to 1913). Kagakushi kenkyū (series II) 49:163–173.Google Scholar
  43. Nihon kagakushi gakkai, ed. 1965. Nihon kagaku gijutsushi taikei. (Survey of the history of science and technology in Japan). vol. 15 (biological sciences). Tokyo: Dai-ichi hōki.Google Scholar
  44. Noguchi, Yakichi. 1978. Nōgyō ni okeru idengaku. (Genetics in agriculture). In Nihon nōgyō hattatsushi. (The history of the development of agriculture in Japan), ed. Nōgyō hattatsushi chōsa kai, vol. 9, 2nd ed., pp. 241–318. Tokyo: Chūō kōronsha.Google Scholar
  45. Onaga, Lisa. 2010. Toyama Kametarō and Vernon Kellogg: Silkworm inheritance experiments in Japan, Siam, and the United States, 1900–1912. Journal of the History of Biology 43:215–264.CrossRefGoogle Scholar
  46. Paul, Diane B., and Barbara A. Kimmelman. 1988. Mendel in America: Theory and practice, 1900–1919. In The American development of biology, ed. Ronald Rainger, Keith R. Benson, and Jane Maienschein, pp. 281–310. Philadelphia: University of Pennsylvania Press.Google Scholar
  47. Rheinberger, Hans-Jörg. 2010. An epistemology of the concrete: Twentieth-century histories of life. Durham: Duke University Press.CrossRefGoogle Scholar
  48. Richmond, Marsha. 2007. The cell as the basis for heredity, development, and evolution: Richard Goldschmidt's program of physiological genetics. In From embryology to evo-devo: A history of evolutionary development, ed. Manfred D. Laublichler and Jane Maienschein, pp. 169–211. Cambridge: MIT Press.Google Scholar
  49. Sakamura, Tetsu. 1918. Kurze Mitteilung ueber die Chromosomenzahlen und die Verwandtschaftsverhaeltnisse der Triticum-Arten. Botanical Magazine 32:150–153.CrossRefGoogle Scholar
  50. Sapp, Jan. 1987. Beyond the gene: Cytoplasmic inheritance and the struggle for authority in genetics. Oxford: Oxford University Press.Google Scholar
  51. Shinotō, Yoshito, ed. 1967. Idengaku no ayumi: Menderu iden hōsoku 100-nen kinen. (The progress of genetics: Centennial anniversary of Mendelian laws of heredity). Tokyo: Shōkabō.Google Scholar
  52. Stebbins, G. Ledyard. 1980. Botany and the synthetic theory of evolution. In The evolutionary synthesis: Perspectives on the unification of biology, ed. Ernst Mayr and William B. Provine, pp. 139–152. Cambridge: Harvard University Press.Google Scholar
  53. Tahara, Masato. 1914–1915. Cytological studies on chrysanthemum I-IV. Botanical Magazine 28:489–494; 29:5–17, 45–51, 92–103. [in Japanese].Google Scholar
  54. Tahara, Masato. 1941. Sonokoro no omoide (Some recollection of that time). N.I.G. danwashitsu 7:2–3.Google Scholar
  55. Tanaka, Kōji, and Ryōichi Imai. 2006. Shokuminchi keiei to nōgyō gijutsu: Taiwan, Nanpō, Manshū (Colonial management and agriculture: Taiwan, the South, and Manchuria). In ‘Teikoku’ nihon no gakuchi (Knowledge of ‘Imperial’ Japan), ed. Tetsuya Sakai, et al., vol. 7, pp. 99–137. Tokyo: Iwanami shoten.Google Scholar
  56. Tanaka, Yoshimaro. 1916. Genetic studies on the silkworm. Journal of the College of Agriculture, Tohoku Imperial University 7:129–255.Google Scholar
  57. Tanaka, Yoshimaro. 1942. Idengaku no shōrai (The future of genetics). Shokubutsu oyobi dōbutsu (Botany and zoology) 10:59–60.Google Scholar
  58. Tanaka, Yoshimaro. 1961a. Nihon idengaku no yoake (1). (The dawn of Japanese genetics (1)). Iden 15 (1): 39–42, 35–37.Google Scholar
  59. Tanaka, Yoshimaro. 1961b. Nihon idengaku no yoake (2). (The dawn of Japanese genetics (2)). Iden 15 (2): 39–42, 35–37.Google Scholar
  60. Toyama, Kametarō. 1906. Studies on the hybridology of insects: I. On some silkworm crosses, with special reference to Mendel’s law of heredity. Bulletin of the College of Agriculture, Imperial University of Tokyo 7:259–393.Google Scholar
  61. Vavilov, Nikolai I. 1949/1950. The origin, variation, immunity and breeding of cultivated plants: Selected writings of N. I. Vavilov. Trans. K. S. Chester. Chronica Botanica 13 (1): 6.Google Scholar
  62. Yamamoto, Mihoko. 2011. Taiwan ni watatta hokudai nōgakubu sotsugyōsei tachi (Graduates of the Faculty of Agriculture of Hokkaido University who went to Taiwan). Annual Report of Hokkaido University Archives 6:15–41.Google Scholar
  63. Yamashita, Kōsuke. 1942. Menka-han no kaisetsu (Establishment of the cotton team). Seiken zihō 1:97–98.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Evolutionary Studies of BiosystemsThe Graduate University for Advanced Studies SOKENDAI HayamaHayamaJapan

Personalised recommendations