A Knowledge-Transfer System Integrating Workflow, A Rule Base, Domain Ontologies and a Goal Tree

  • Nobuhito Marumo
  • Takashi Beppu
  • Takahira Yamaguchi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8793)


This paper discusses how to develop a knowledge-transfer system (KTS) by integrating four knowledge sources: workflow, a rule base, domain ontologies, and a goal tree with domain ontology centered structure. When novice workers acquire knowledge from experienced workers, they should not only learn a single form of knowledge, but also understand the interrelationships among these four knowledge sources. In this study, we look at a case study involving a snow control plan for highways. This study present a case in which KTS is being implemented well.


Knowledge Management Knowledge Transfer Ontologies 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nonaka, I., Takeuchi, H.: The Knowledge-Creating Company: How Japanese Companies Create the Dynamics of Innovation. Oxford University Press, Oxford (1995)Google Scholar
  2. 2.
    Nonaka, I., Konnno, N.: The Concept of ‘ba’: Building a foundation for knowledge creation. California Management Review 40(3), 30–54 (1998)CrossRefGoogle Scholar
  3. 3.
    Hijikata, Y., Takenaka, T., Kusumura, Y., Nishida, S.: Interactive knowledge externalization and combination for SECI model. In: Proceedings of the 4th International Conference on Knowledge Capture, Whistler BC, Canada, pp. 151–158 (2007)Google Scholar
  4. 4.
  5. 5.
    Japan Society of Civil Engineers. Public Works Management Journal (424), 32–36 (2013)Google Scholar
  6. 6.
    Razmerita, L., Angehrn, A., Maedche, A.: Ontology-Based User Modeling for Knowledge Management Systems. In: Brusilovsky, P., Corbett, A.T., de Rosis, F. (eds.) UM 2003. LNCS (LNAI), vol. 2702, pp. 213–217. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Gronau, N., Weber, E.: Management of Knowledge Intensive Business Processes. In: Desel, J., Pernici, B., Weske, M. (eds.) BPM 2004. LNCS, vol. 3080, pp. 163–178. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Okabe, M., Yanagisawa, M., Yamazaki, H., Kobayashi, K., Yoshioka, A., Yamaguchi, T.: Organizational Knowledge Transfer of Intelligence Skill Using Ontologies and a Rule-Based System. In: Yamaguchi, T. (ed.) PAKM 2008. LNCS (LNAI), vol. 5345, pp. 207–218. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Kobayashi, K., Yoshioka, A., Okabe, M., Yanagisawa, M., Yamazaki, H., Yamaguchi, T.: How Much Well Does Organizational Knowledge Transfer Work with Domain and Rule Ontologies? In: Karagiannis, D., Jin, Z. (eds.) KSEM 2009. LNCS (LNAI), vol. 5914, pp. 382–393. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Ning, H., Shi Han, D.: Ontology-based Enterprise Knowledge Integration: Robotics and Computer-Integrated Manufacturing, pp. 562–571 (2008)Google Scholar
  11. 11.
    Wang, Y., Guo, J., Hu, T., Wang, J.: An Ontology-Based Framework for Building Adaptable Knowledge Management Systems. In: Zhang, Z., Siekmann, J.H. (eds.) KSEM 2007. LNCS (LNAI), vol. 4798, pp. 655–660. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Martinho, D., Silva, A.R.: A Recommendation Algorithm to Capture End-Users’ Tacit Knowledge. In: Barros, A., Gal, A., Kindler, E. (eds.) BPM 2012. LNCS, vol. 7481, pp. 216–222. Springer, Heidelberg (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Nobuhito Marumo
    • 1
  • Takashi Beppu
    • 1
  • Takahira Yamaguchi
    • 2
  1. 1.Graduate School of Science and TechnologyKeio UniversityYokohama-shiJapan
  2. 2.Faculty of Science and TechnologyKeio UniversityJapan

Personalised recommendations