An Efficient Robust Secret Sharing Scheme with Optimal Cheater Resiliency

  • Partha Sarathi Roy
  • Avishek Adhikari
  • Rui Xu
  • Kirill Morozov
  • Kouichi Sakurai
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8804)


In this paper, we consider the problem of (t, δ) robust secret sharing secure against rushing adversary. We design a simple t-out-of-n secret sharing scheme, which can reconstruct the secret in presence of t cheating participants except with probability at most δ, provided t < n/2. The later condition on cheater resilience is optimal for the case of public reconstruction of the secret, on which we focus in this work.

Our construction improves the share size of Cevallos et al. (EUROCRYPT-2012) robust secret sharing scheme by applying the “authentication tag compression” technique devised by Carpentieri in 1995. Our improvement is by a constant factor that does not contradict the asymptotic near-optimality of the former scheme. To the best of our knowledge, the proposed scheme has the smallest share size, among other efficient rushing (t, δ) robust secret sharing schemes with optimal cheater resilience.


Robust secret sharing optimal cheater resiliency rushing adversary 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Araki, T., Obana, S.: Flaws in some secret sharing schemes against cheating. In: Pieprzyk, J., Ghodosi, H., Dawson, E. (eds.) ACISP 2007. LNCS, vol. 4586, pp. 122–132. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Araki, T.: Efficient (k,n) threshold secret sharing schemes secure against cheating from n − 1 cheaters. In: Pieprzyk, J., Ghodosi, H., Dawson, E. (eds.) ACISP 2007. LNCS, vol. 4586, pp. 133–142. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Berlekamp, E.R., Welch, L.R.: Error correction of algebraic block codes. U.S. Patent Number 4, 633.470 (1986)Google Scholar
  4. 4.
    Blakley, G.R.: Safeguarding cryptographic keys. In: AFIPS 1979, pp. 313–317 (1979)Google Scholar
  5. 5.
    Cevallos, A., Fehr, S., Ostrovsky, R., Rabani, Y.: Unconditionally-secure robust secret sharing with compact shares. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 195–208. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  6. 6.
    Cabello, S., Padro, C., Saez, G.: Secret sharing schemes with detection of cheaters for a general access structure. Design Codes Cryptography 25(2), 175–188 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Carpentieri, M.: A perfect threshold secret sharing scheme to identify cheaters. Design Codes Cryptography 5(3), 183–187 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Choudhury, A.: Brief announcement: optimal amortized secret sharing with cheater identification. In: PODC 2012, pp. 101–102 (2012)Google Scholar
  9. 9.
    Cramer, R., Damgård, I.B., Fehr, S.: On the cost of reconstructing a secret, or VSS with optimal reconstruction phase. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 503–523. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  10. 10.
    Den Boer, B.: A simple and key-economical unconditional authentication scheme. Journal of Computer Security 2, 65–72 (1993)Google Scholar
  11. 11.
    Cramer, R., Dodis, Y., Fehr, S., Padró, C., Wichs, D.: Detection of algebraic manipulation with applications to robust secret sharing and fuzzy extractors. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 471–488. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Chor, B., Goldwasser, S., Micali, S., Awerbuch, B.: Verifiable Secret Sharing and Achieving Simultaneity in the Presence of Faults (Extended Abstract). In: FOCS 1985, pp. 383–395 (1985)Google Scholar
  13. 13.
    Dolev, D., Dwork, C., Waarts, O., Yung, M.: Perfectly secure message transmission. In: FOCS 1990, pp. 36–45 (1990), Journal version in J. ACM 40(1), 17–47 (1993)Google Scholar
  14. 14.
    Ishai, Y., Ostrovsky, R., Seyalioglu, H.: Identifying cheaters without an honest majority. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 21–38. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  15. 15.
    Jhanwar, M.P., Safavi-Naini, R.: Unconditionally-secure ideal robust secret sharing schemes for threshold and multilevel access structure. Mathematical Cryptology 7(4), 279–296 (2013)zbMATHMathSciNetGoogle Scholar
  16. 16.
    Johansson, T., Kabatianskii, G., Smeets, B.: On the relation between A-codes and codes correcting independent errors. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 1–11. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  17. 17.
    Kurosawa, K., Obana, S., Ogata, W.: t-cheater identifiable (k, n) threshold secret sharing schemes. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 410–423. Springer, Heidelberg (1995)Google Scholar
  18. 18.
    Lakshmanan, S., Ahamad, M., Venkateswaran, H.: Responsive security for stored data. IEEE Trans. Parallel Distrib. Syst. 14(9), 818–828 (2003)CrossRefGoogle Scholar
  19. 19.
    MacWilliams, F.J., Sloane, N.J.A.: The theory of error-correcting codes, vol. 16. Elsevier (1977)Google Scholar
  20. 20.
    Martin, K.M., Paterson, M.B., Stinson, D.R.: Error decodable secret sharing and one-round perfectly secure message transmission for general adversary structures. Cryptography and Communications 3(2), 65–86 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    McEliece, R., Sarwate, D.: On sharing secrets and reed-solomon codes. Commun. ACM 24(9), 583–584 (1981)CrossRefMathSciNetGoogle Scholar
  22. 22.
    Obana, S.: Almost optimum t-cheater identifiable secret sharing schemes. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 284–302. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  23. 23.
    Obana, S., Araki, T.: Almost optimum secret sharing schemes secure against cheating for arbitrary secret distribution. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 364–379. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  24. 24.
    Ogata, W., Kurosawa, K., Stinson, D.R.: Optimum secret sharing scheme secure against cheating. SIAM J. Discrete Math. 20(1), 79–95 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with honest majority (extended abstract). In: STOC 1989, pp. 73–85 (1989)Google Scholar
  26. 26.
    Shamir, A.: How to share a secret. Comm. ACM 22(11), 612–613 (1979)CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    Taylor, R.: An Integrity Check Value Algorithm for Stream Ciphers. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 40–48. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  28. 28.
    Tompa, M., Woll, H.: How to share a secret with cheaters. J. Cryptology 1(2), 133–138 (1988)zbMATHMathSciNetGoogle Scholar
  29. 29.
    Waldman, M., Rubin, A.D., Cranor, L.F.: The architecture of robust publishing systems. ACM Trans. Internet Techn. 1(2), 199–230 (2001)CrossRefGoogle Scholar
  30. 30.
    Wegman, M.N., Lawrence Carter, J.: New classes and applications of hash functions. In: FOCS 1979, pp. 175–182 (1979)Google Scholar
  31. 31.
    Xu, R., Morozov, K., Takagi, T.: On Cheater Identifiable Secret Sharing Schemes Secure Against Rushing Adversary. In: Sakiyama, K., Terada, M. (eds.) IWSEC 2013. LNCS, vol. 8231, pp. 258–271. Springer, Heidelberg (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Partha Sarathi Roy
    • 1
  • Avishek Adhikari
    • 1
  • Rui Xu
    • 2
  • Kirill Morozov
    • 3
  • Kouichi Sakurai
    • 4
  1. 1.Department of Pure MathematicsUniversity of CalcuttaIndia
  2. 2.Graduate School of MathematicsKyushu UniversityJapan
  3. 3.Institute of Mathematics for IndustryKyushu UniversityJapan
  4. 4.Graduate School of Information Science and Electrical EngineeringKyushu UniversityJapan

Personalised recommendations