Advertisement

Generic 3D Geometrical and Mechanical Modeling of the Skin/Subcutaneous Complex by a Procedural Hybrid Method

  • Christian Herlin
  • Benjamin Gilles
  • Gérard Subsol
  • Guillaume Captier
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8789)

Abstract

The aim of this work is to build a 3D geometric and mechanical model of the skin/subcutaneous complex (SSC) which could be adapted to the different parts of the body and to the morphological parameters of the patient. We present first the anatomical pattern of the SSC. Then, we propose a hybrid model which combines volume, membranous and unidimensional models. The complex internal structure of the SSC is automatically created by a procedural process. All the models are defined by some parameters which can be easily measured by medical imaging. We describe several preliminary experiments which show how this hybrid method models realistic geometrical deformations and physical behaviors and could be used for surgery simulation and planning.

Keywords

biomechanics soft tissue skin/subcutaneous complex plastic surgery procedural method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abu-Hijleh, M.F., Roshier, A.L., Al-Shboul, Q., Dharap, A.S., Harris, P.F.: The membranous layer of superficial fascia: evidence for its widespread distribution in the body. Surgical and Radiologic Anatomy 28(6), 606–619 (2006)CrossRefGoogle Scholar
  2. 2.
    Agha, R., Fowler, A., Herlin, C., Goodacre, T., Orgill, D.: Use of autologous fat grafting for reconstruction post-mastectomy and breast conserving surgery: A systematic review and meta-analysis. European Journal of Surgical Oncology 40(5), 614–615 (2014)CrossRefGoogle Scholar
  3. 3.
    Allard, J., Cotin, S., Faure, F., Bensoussan, P.J., Poyer, F., Duriez, C., Delingette, H., Grisoni, L.: SOFA - an open source framework for medical simulation. In: MMVR 15 - Medicine Meets Virtual Reality, vol. 125, pp. 13–18 (February 2007), http://hal.inria.fr/inria-00319416
  4. 4.
    Barbarino, G., Jabareen, M., Trzewik, J., Mazza, E.: Physically based finite element model of the face. In: Bello, F., Edwards, E. (eds.) ISBMS 2008. LNCS, vol. 5104, pp. 1–10. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Chabanas, M., Luboz, V., Payan, Y.: Patient specific finite element model of the face soft tissues for computer-assisted maxillofacial surgery. Medical Image Analysis 7(2), 131–151 (2003)CrossRefGoogle Scholar
  6. 6.
    Comley, K., Fleck, N.: Deep penetration and liquid injection into adipose tissue. Journal of Mechanics of Materials and Structures 6(1-4), 127–140 (2011)CrossRefGoogle Scholar
  7. 7.
    Herlin, C., Chica-Rosa, A., Subsol, G., Gilles, B., Macri, F., Beregi, J., Captier, G.: Three-dimensional study of the skin/subcutaneous complex using in vivo whole body 3 tesla MRI. review of the literature and confirmation of a generic pattern of organisation. Accepted for Publication in Surgical and Radiologic Anatomy (2014)Google Scholar
  8. 8.
    Hexsel, D., Siega, C., Schilling-Souza, J., Porto, M.D., Rodrigues, T.C.: A comparative study of the anatomy of adipose tissue in areas with and without raised lesions of cellulite using magnetic resonance imaging. Dermatologic Surgery 39(12), 1877–1886 (2013)CrossRefGoogle Scholar
  9. 9.
    Hung, A.P.L., Wu, T., Hunter, P., Mithraratne, K.: A framework for generating anatomically detailed subject-specific human facial models for biomechanical simulations. The Visual Computer, 1–13 (May 2014)Google Scholar
  10. 10.
    Lapuebla-Ferri, A., del Palomar, A.P., Herrero, J., Jiménez-Mochol, A.J.: A patient- specific FE-based methodology to simulate prosthesis insertion during an augmen- tation mammoplasty. Medical Engineering & Physics 33(9), 1094–1102 (2011)CrossRefGoogle Scholar
  11. 11.
    Lockwood, T.E.: Superficial fascial system (SFS) of the trunk and extremities: a new concept. Plastic and Reconstructive Surgery 87(6), 1009–1018 (1991)CrossRefGoogle Scholar
  12. 12.
    Majorczyk, V., Cotin, S., Duriez, C., Allard, J.: Simulation of lipofilling reconstructive surgery using coupled eulerian fluid and deformable solid models. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013, Part III. LNCS, vol. 8151, pp. 299–306. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  13. 13.
    Nash, L.G., Phillips, M.N., Nicholson, H., Barnett, R., Zhang, M.: Skin ligaments: regional distribution and variation in morphology. Clinical Anatomy 17(4), 287–293 (2004)CrossRefGoogle Scholar
  14. 14.
    Roose, L., De Maerteleire, W., Mollemans, W., Maes, F., Suetens, P.: Simulation of soft-tissue deformations for breast augmentation planning. In: Harders, M., Székely, G. (eds.) ISBMS 2006. LNCS, vol. 4072, pp. 197–205. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Tran, H.V.: Caractérisation des propriétés mécaniques de la peau humaine in vivo via l’IRM. Ph.D. thesis, Université de Technologie de Compiègne (October 2007)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Christian Herlin
    • 1
    • 2
    • 3
  • Benjamin Gilles
    • 4
  • Gérard Subsol
    • 4
  • Guillaume Captier
    • 1
    • 3
  1. 1.Dept. of Plastic Pediatric SurgeryCHRU MontpellierFrance
  2. 2.Dept. of Plastic Surgery, Burns and Wound HealingCHRU MontpellierFrance
  3. 3.Laboratory of AnatomyMontpellier 1 UniversityFrance
  4. 4.ICAR Research Team, LIRMM, CNRSUniversity of Montpellier 2France

Personalised recommendations