Interactive Training System for Interventional Electrocardiology Procedures

  • Hugo Talbot
  • Federico Spadoni
  • Christian Duriez
  • Maxime Sermesant
  • Stephane Cotin
  • Hervé Delingette
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8789)

Abstract

Recent progress in cardiac catheterization and devices allowed to develop new therapies for severe cardiac diseases like arrhythmias and heart failure. The skills required for such interventions are still very challenging to learn, and typically acquired over several years. Virtual reality simulators can reduce this burden by allowing to practice such procedures without consequences on patients. In this paper, we propose the first training system dedicated to cardiac electrophysiology, including pacing and ablation procedures. Our framework involves an efficient GPU-based electrophysiological model. Thanks to an innovative multithreading approach, we reach high computational performances that allow to account for user interactions in real-time. Based on a scenario of cardiac arrhythmia, we demonstrate the ability of the user-guided simulator to navigate inside vessels and cardiac cavities with a catheter and to reproduce an ablation procedure involving: extra-cellular potential measurements, endocardial surface reconstruction, electrophysiology mapping, radio-frequency (RF) ablation, as well as electrical stimulation. This works is a step towards computerized medical learning curriculum.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aliev, R., Panfilov, A.: A simple two-variable model of cardiac excitation. Chaos, Solitons and Fractals 7(3), 293–301 (1996)CrossRefGoogle Scholar
  2. 2.
    Bertails, F., Audoly, B., Cani, M.-P., Querleux, B., Leroy, F., Lévêque, J.-L.: Super-helices for predicting the dynamics of natural hair. ACM Transactions on Graphics 25, 1180–1187 (2006)CrossRefGoogle Scholar
  3. 3.
    Chiang, P., Zheng, J., Yu, Y., Mak, K., Chui, C., Cai, Y.: A vr simulator for intracardiac intervention. Computer Graphics and Applications 33(1), 44–57 (2013)CrossRefGoogle Scholar
  4. 4.
    Dawson, S., Cotin, S., Meglan, D., Shaffer, D., Ferrell, M.: Designing a computer-based simulator for interventional cardiology training. Catheterization and Cardiovascular Interventions 51(4), 522–527 (2000)CrossRefGoogle Scholar
  5. 5.
    Dequidt, J., Marchal, M., Duriez, C., Kerien, E., Cotin, S.: Interactive simulation of embolization coils: Modeling and experimental validation. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part I. LNCS, vol. 5241, pp. 695–702. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Duriez, C., Cotin, S., Lenoir, J., Neumann, P.: New approaches to catheter navigation for interventional radiology simulation 1. Computer Aided Surgery 11(6), 300–308 (2006)Google Scholar
  7. 7.
    Johnson, D., Willemsen, P.: Accelerated haptic rendering of polygonal models through local descent. In: Haptic Interfaces for Virtual Environment and Teleoperator Systems, pp. 18–23 (2004)Google Scholar
  8. 8.
    Mansi, T., Pennec, X., Sermesant, M., Delingette, H., Ayache, N.: iLogDemons: A demons-based registration algorithm for tracking incompressible elastic biological tissues. International Journal of Computer Vision 92(1), 92–111 (2011)CrossRefGoogle Scholar
  9. 9.
    Maron, B.J., Towbin, J.A., Thiene, G., Antzelevitch, C., Corrado, D., Arnett, D., Moss, A.J., Seidman, C.E., Young, J.B.: Contemporary definitions and classification of the cardiomyopathies. Circulation 113(14), 1807–1816 (2006)CrossRefGoogle Scholar
  10. 10.
    Mitchell, C., Schaeffer, D.: A two-current model for the dynamics of cardiac membrane. Bulletin of Mathematical Biology 65, 767–793 (2003)CrossRefGoogle Scholar
  11. 11.
    Rapaka, S., Mansi, T., Georgescu, B., Pop, M., Wright, G.A., Kamen, A., Comaniciu, D.: LBM-EP: Lattice-boltzmann method for fast cardiac electrophysiology simulation from 3D images. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part II. LNCS, vol. 7511, pp. 33–40. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  12. 12.
    Talbot, H., Marchesseau, S., Duriez, C., Sermesant, M., Cotin, S., Delingette, H.: Towards an interactive electromechanical model of the heart. Journal of the Royal Society Interface Focus 3(2) (April 2013)Google Scholar
  13. 13.
    Wang, F., Duratti, L., Samur, E., Spaelter, U., Bleuler, H.: A computer-based real-time simulation of interventional radiology. In: Engineering in Medicine and Biology Society, pp. 1742–1745. IEEE (2007)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Hugo Talbot
    • 1
    • 2
  • Federico Spadoni
    • 2
  • Christian Duriez
    • 1
  • Maxime Sermesant
    • 2
  • Stephane Cotin
    • 1
  • Hervé Delingette
    • 2
  1. 1.Shacra Team, Inria LilleNorth EuropeFrance
  2. 2.Asclepios Team, Inria Sophia AntipolisMéditerranéeFrance

Personalised recommendations