Brain Ventricular Morphology Analysis Using a Set of Ventricular-Specific Feature Descriptors

  • Jaeil Kim
  • Hojin Ryoo
  • Maria del C. Valdés Hernández
  • Natalie A. Royle
  • Jinah Park
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8789)


Morphological changes of the brain lateral ventricles are known to be a marker of brain atrophy. Anatomically, each lateral ventricle has three horns, which extend into the different parts (i.e. frontal, occipital and temporal lobes) of the brain; their deformations can be associated with morphological alterations of the surrounding structures and they are revealed as complex patterns of their shape variations across subjects. In this paper, we propose a novel approach for the ventricular morphometry using structural feature descriptors, defined on the 3D shape model of the lateral ventricles, to characterize its shape, namely width, length and bending of individual horns and relative orientations between horns. We also demonstrate the descriptive ability of our feature-based morphometry through statistical analyses on a clinical dataset from a study of aging.


Standard Deviation Lateral Ventricle Feature Descriptor Temporal Horn Statistical Shape Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Antiga, L., Ene-Iordache, B., Remuzzi, A.: Computational geometry for patient-specific reconstruction and meshing of blood vessels from MR and CT angiography. IEEE Trans. Med. Imaging 22(5), 674–684 (2003)CrossRefGoogle Scholar
  2. 2.
    Apostolova, L.G., Green, A.E., Babakchanian, S., Hwang, K.S., Chou, Y.Y., Toga, A.W., Thompson, P.M.: Hippocampal atrophy and ventricular enlargement in normal aging, mild cognitive impairment (MCI), and Alzheimer Disease. Alz. Dis. Assoc. Dis. 26(1), 17–27 (2012)CrossRefGoogle Scholar
  3. 3.
    Aribisala, B.S., Valdés Hernández, M.C., Royle, N.A., Morris, Z., Muñoz Maniega, S., Bastin, M.E., Deary, I.J., Wardlaw, J.M.: Brain atrophy associations with white matter lesions in the ageing brain: the Lothian Birth Cohort 1936. Eur. Radiol. 23(4), 1084–1092 (2013)CrossRefGoogle Scholar
  4. 4.
    Bourne, S.K., Conrad, A., Konrad, P.E., Neimat, J.S., Davis, T.L.: Ventricular width and complicated recovery following deep brain stimulation surgery. Stereotact Funct. Neurosurg. 90(3), 167–172 (2012)CrossRefGoogle Scholar
  5. 5.
    Buckner, R.L.: Memory and executive function in aging and ad: multiple factors that cause decline and reserve factors that compensate. Neuron 44(1), 195–208 (2004)CrossRefGoogle Scholar
  6. 6.
    Deary, I.J., Gow, A.J., Taylor, M.D., Corley, J., Brett, C., Wilson, V., Campbell, H., Whalley, L.J., Visscher, P.M., Porteous, D.J., Starr, J.M.: The Lothian Birth Cohort 1936: a study to examine influences on cognitive ageing from age 11 to age 70 and beyond. BMC Geriatr. 7, 28 (2007)CrossRefGoogle Scholar
  7. 7.
    Ferrarini, L., Palm, W.M., Olofsen, H., van Buchem, M.A., Reiber, J.H.C., Admiraal-Behloul, F.: Shape differences of the brain ventricles in Alzheimer’s disease. NeuroImage 32(3), 1060–1069 (2006)CrossRefGoogle Scholar
  8. 8.
    Frisoni, G.B., Geroldi, C., Beltramello, A., Bianchetti, A., Binetti, G., Bordiga, G., DeCarli, C., Laakso, M.P., Soininen, H., Testa, C., et al.: Radial width of the temporal horn: a sensitive measure in alzheimer disease. American Journal of Neuroradiology 23(1), 35–47 (2002)Google Scholar
  9. 9.
    Gower, J.C.: Generalized procrustes analysis. Psychometrika 40(1), 33–51 (1975)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Gutman, B.A., Wang, Y., Rajagopalan, P., Toga, A.W., Thompson, P.M.: Shape matching with medial curves and 1-D group-wise registration. In: 2012 9th IEEE International Symposium on Biomedical Imaging, pp. 716–719 (2012)Google Scholar
  11. 11.
    Heimann, T., Meinzer, H.P.: Statistical shape models for 3D medical image segmentation: A review. Med. Image Anal. 13(4), 543–563 (2009)CrossRefGoogle Scholar
  12. 12.
    Heitz, G., Rohlfing, T., Maurer, J.C.R.: Statistical shape model generation using nonrigid deformation of a template mesh. In: SPIE on Medical Imaging, pp. 1411–1421 (2005)Google Scholar
  13. 13.
    Jeong, H.S., Lee, S., Yoon, S., Jung, J.J., Cho, H.B., Kim, B.N., Ma, J., Ko, E., Im, J.J., Ban, S., Renshaw, P.F., Lyoo, I.K.: Morphometric abnormalities of the lateral ventricles in methamphetamine-dependent subjects. Drug Alcohol Depend 131(3), 222–229 (2013)CrossRefGoogle Scholar
  14. 14.
    Kim, J., Park, J.: Organ Shape Modeling Based on the Laplacian Deformation Framework for Surface-Based Morphometry Studies. J. Comp. Sci. Eng. 6, 219–226 (2012)CrossRefGoogle Scholar
  15. 15.
    Lee, J.H., Yoon, S., Renshaw, P.F., Kim, T.S., Jung, J.J., Choi, Y., Kim, B.N., Jacobson, A.M., Lyoo, I.K.: Morphometric changes in lateral ventricles of patients with recent-onset type 2 diabetes mellitus. PloS One 8(4), e60515 (2013)Google Scholar
  16. 16.
    Lu, Y.C., Untaroiu, C.D.: Statistical shape analysis of clavicular cortical bone with applications to the development of mean and boundary shape models. Comput. Meth. Prog. Bio. 111(3), 613–628 (2013)CrossRefGoogle Scholar
  17. 17.
    Ng, H.-F., Chuang, C.-H., Hsu, C.-H.: Extraction and Analysis of Structural Features of Lateral Ventricle in Brain Medical Images. In: 2012 Sixth International Conference on Genetic and Evolutionary Computing (ICGEC), pp. 35–38 (2012)Google Scholar
  18. 18.
    Nolte, J.: Essentials of the Human Brain. Elsevier Health Sciences (2009)Google Scholar
  19. 19.
    Piccinelli, M., Veneziani, A., Steinman, D.A., Remuzzi, A., Antiga, L.: A framework for geometric analysis of vascular structures: application to cerebral aneurysms. IEEE Trans. Med. Imaging 28(8), 1141–1155 (2009)CrossRefGoogle Scholar
  20. 20.
    Wan, K.R., Toy, J.A., Wolfe, R., Danks, A.: Factors affecting the accuracy of ventricular catheter placement. J. Clin. Neurosci. 18(4), 485–488 (2011)CrossRefGoogle Scholar
  21. 21.
    Wardlaw, J.M., Bastin, M.E., Valdés Hernández, M.C., Maniega, S.M., Royle, N.A., Morris, Z., Clayden, J.D., Sandeman, E.M., Eadie, E., Murray, C., Starr, J.M., Deary, I.J.: Brain aging, cognition in youth and old age and vascular disease in the Lothian Birth Cohort 1936: rationale, design and methodology of the imaging protocol. Int. J. Stroke 6(6), 547–559 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Jaeil Kim
    • 1
  • Hojin Ryoo
    • 1
  • Maria del C. Valdés Hernández
    • 2
  • Natalie A. Royle
    • 2
  • Jinah Park
    • 1
  1. 1.Department of Computer ScienceKorea Advanced Institute of Science and TechnologyDaejeonRepublic of Korea
  2. 2.Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUK

Personalised recommendations