3D Interactive Ultrasound Image Deformation for Realistic Prostate Biopsy Simulation

  • Sonia-Yuki Selmi
  • Emmanuel Promayon
  • Johan Sarrazin
  • Jocelyne Troccaz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8789)


Realistic medical procedure simulators improve the learning curve of the clinicians if they can reproduce real conditions and use. This paper describes the improvement of a transrectal ultrasound guided prostate biopsy simulator by adding the simulation of real-time prostate movements and deformations. A discrete bio-mechanical model is used to modify a 3D texture of an ultrasound image volume in order to quickly simulate the actual displacements and deformations. This paper describes this model and presents how the mesh deformation is used to induce the UltraSound volume deformation. The validation of the method is based on both a quantitative and a qualitative assessment. Experimental images acquired on a phantom are compared using mutual information metrics to the resulting generated images. This comparison shows that the proposed method offers realistic deformed 3D ultrasound images at interactive time. The method was successfully integrated to improve the transrectal ultrasound simulator.


Mutual Information Probe Position Image Deformation Transrectal Ultrasound Virtual Reality Simulator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baade, P.D., Youlden, D.R., Krnjacki, L.J.: International epidemiology of prostate cancer: geographical distribution and secular trends. Mol. Nutr. Food Res. 53(2), 171–184 (2009)CrossRefGoogle Scholar
  2. 2.
    Selmi, S.Y., Fiard, G., Promayon, E., Vadcard, L., Troccaz, J.: A virtual reality simulator combining a learning environment and clinical case database for image-guided prostate biopsy. In: 26th IEEE International Symposium on Computer-Based Medical Systems, Porto, Portugal (2013)Google Scholar
  3. 3.
    Fiard, G., Selmi, S., Promayon, E., Vadcard, L., Descotes, J.-L., Troccaz, J.: Initial validation of a virtual-reality learning environment for prostate biopsies: realism matters! Journal of Endourology 28(4), 453–458 (2014)CrossRefGoogle Scholar
  4. 4.
    Chalasani, V., Cool, D.W., Sherebrin, S., Fenster, A., Chin, J., Izawa, J.I.: Development and validation of a virtual reality transrectal ultrasound guided prostatic biopsy simulator. Can Urol. Assoc. J. 5(1), 19–26 (2011)CrossRefGoogle Scholar
  5. 5.
    Wein, W., Khamene, A., Clevert, D.-A., Kutter, O., Navab, N.: Simulation and Fully Automatic Multimodal Registration of Medical Ultrasound. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part I. LNCS, vol. 4791, pp. 136–143. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Jahya, A., Herink, M., Misra, S.: A framework for predicting three-dimensional prostate deformation in real time. The International Journal Of Medical Robotics And Computer Assisted Surgery 9, 52–60 (2013)CrossRefGoogle Scholar
  7. 7.
    Goksel, O., Sapchuk, K., Morris, W.J., Salcudean, S.E.: Prostate Brachytherapy Training with Simulated Ultrasound and Fluoroscopy Images. IEEE Trans. Biomedical Engineering 60(4), 1002–1012 (2013)CrossRefGoogle Scholar
  8. 8.
    d’Aulignac, D., Laugier, C., Troccaz, J., Vieira, S.: Towards a realistic echographic simulator. Medical Image Analysis 10(1), 71–81 (2006)CrossRefGoogle Scholar
  9. 9.
    Vidal, F.P., John, N.W., Healey, A.E., Gould, D.A.: Simulation of ultrasound guided needle puncture using patient specific data with 3D textures and volume haptics. Comp. Anim. Virtual Worlds 19, 111–127 (2008)CrossRefGoogle Scholar
  10. 10.
    Marchal, M., Promayon, E., Troccaz, J.: Simulating prostate surgical procedures with a discrete soft tissue model. In: Navazo, I., Mendoza, C. (eds.) Eurographics Workshop in Virtual Reality Interactions and Physical Simulations, I, pp. 109–118 (2006)Google Scholar
  11. 11.
    Floater, M.S., Kos, G., Reimers, M.: Mean value coordinates in 3D. Comput. Aided Geom. Design 22(7), 623–631 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Hungr, N., Long, J.A., Beix, V., Troccaz, J.: A realistic deformable prostate phantom for multimodal imaging and needle-insertion procedures. Med. Phys. 39(4), 2031–2041 (2012)CrossRefGoogle Scholar
  13. 13.
    Maes, F., Collignon, A., Vandermeulen, D., Marchal, G., Suetens, P.: Multimodality image registration by maximization of mutual information. IEEE Transactions on Medical Imaging 16, 187–198 (1997)CrossRefGoogle Scholar
  14. 14.
    Fouard, C., Deram, A., Keraval, Y., Promayon, E.: CamiTK: A Modular Framework Integrating Visualization, Image Processing and Biomechanical Modeling. In: Payan, Y. (ed.) Soft Tissue Biomechanical Modeling for Computer Assisted Surgery, pp. 323–354. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  15. 15.
    Mattes, D., Haynor, D.R., Vesselle, H., Lewellen, T.K., Eubank, W.: Nonrigid multimodality image registration. In: Sonka, M., Hanson, K.M. (eds.) Medical Imaging: Image Processing. Proc. SPIE, vol. 4322, pp. 1609–1620. SPIE Press, Bellingham (2001)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Sonia-Yuki Selmi
    • 1
  • Emmanuel Promayon
    • 1
  • Johan Sarrazin
    • 1
    • 2
  • Jocelyne Troccaz
    • 1
  1. 1.UJF-Grenoble 1 / CNRS / TIMC-IMAG UMR 5525GrenobleFrance
  2. 2.KOELIS SASLa TroncheFrance

Personalised recommendations