Simulation of Catheters and Guidewires for Cardiovascular Interventions Using an Inextensible Cosserat Rod

  • Przemyslaw Korzeniowski
  • Francisco Martinez-Martinez
  • Niels Hald
  • Fernando Bello
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8789)


Effective and safe performance of cardiovascular interventions requires excellent catheter / guidewire manipulation skills. These skills are mainly gained through an apprenticeship on real patients, which may not be safe or cost-effective. Computer simulation offers an alternative for core skills training. However, replicating the physical behaviour of real instruments navigated through blood vessels is a challenging task.

We use an inextensible Cosserat rod and impulse-based techniques to model virtual catheters and guidewires. This allows an efficient recreation of bending, stretching and twisting phenomena of the material in real-time. It also guarantees an immediate response to user manipulations even for long instruments. The mechanical parameters of six guidewires and three catheters were optimized with respect to their real counterparts scanned in a silicone phantom using CT.

The validation results show near sub-millimetre accuracy with an average distance error between the trajectories of the simulated and scanned instruments of 1.34mm (standard deviation: 0.95mm, RMS: 1.66mm). Our implementation requires just 0.2ms per time step to process 200 Cosserat elements on an off-the-shelf laptop, enabling simulation of 40cm long instruments at 4 kHz, thus significantly exceeding the minimum required haptic interactive rate (1 kHz).


Catheter Guidewire Cosserat Rod Medical Simulator 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    WHO, Global status report on noncommunicable diseases 2011: GenevaGoogle Scholar
  2. 2.
    Bridges, M., Diamond, D.L.: The financial impact of teaching surgical residents in the operating room. Am. J. Surg. 177(1), 28–32 (1999)CrossRefGoogle Scholar
  3. 3.
    de Montbrun, S.L., Macrae, H.: Simulation in surgical education. Clin. Colon. Rectal Surg. 25(3), 156–165 (2012)CrossRefGoogle Scholar
  4. 4.
    Gould, D.A., et al.: Simulation devices in interventional radiology: validation pending. J. Vasc. Interv. Radiol. 20(7 suppl.), S324–S325 (2009)Google Scholar
  5. 5.
    Wang, F., et al.: A computer-based real-time simulation of interventional radiology. In: Conf. Proc. IEEE Eng. Med. Biol. Soc., vol. 2007, pp. 1742–1745 (2007)Google Scholar
  6. 6.
    Luboz, V., et al.: Real-time guidwire simulation in complex vascular models. The Visual Computer 25(9), 827–834 (2009)CrossRefGoogle Scholar
  7. 7.
    Duriez, C., et al.: New approaches to catheter navigation for interventional radiology simulation. Comput. Aided Surg. 11(6), 300–308 (2006)Google Scholar
  8. 8.
    Alderliesten, T., et al.: Modeling friction, intrinsic curvature, and rotation of guide wires for simulation of minimally invasive vascular interventions. IEEE TBME 54(1), 29–38 (2007)Google Scholar
  9. 9.
    Pai, D.K.: STRANDS: Interactive simulation of thin solids using cosserat models. Computer Graphics Forum 21(3), 347–352 (2002)CrossRefGoogle Scholar
  10. 10.
    Antman, S.: Nonlinear Problems of Elasticity. Springer (1995)Google Scholar
  11. 11.
    Wen, T., et al.: A stable and real-time nonlinear elastic approach to simulating guidewire and catheter insertions based on Cosserat rod. IEEE Trans. Biomed. Eng. 59(8), 2211–2218 (2012)CrossRefGoogle Scholar
  12. 12.
    Spillmann, J., Teschner, M.: CORDE: Cosserat Rod Elements for the Dynamic Simulation of One-Dimensional Elastic Objects. In: Symposium on Comp Animation 2007: ACM Siggraph/ Eurographics Symposium Proceedings, pp. 63–72 (2007)Google Scholar
  13. 13.
    Spillmann, J., Harders, M.: Inextensible elastic rods with torsional friction based on Lagrange multipliers. Computer Animation and Virtual Worlds 21(6), 561–572 (2010)CrossRefGoogle Scholar
  14. 14.
    Duratti, L., et al.: A Real-Time Simulator for Interventional Radiology. In: VRST 2008 Proceedings of the 2008 ACM Symposium on Virtual Reality Software and Technology (2008)Google Scholar
  15. 15.
    Tang, W., et al.: A realistic elastic rod model for real-time simulation of minimally invasive vascular interventions. Visual Computer 26(9), 1157–1165 (2010)CrossRefGoogle Scholar
  16. 16.
    Bergou, M., et al.: Discrete elastic rods. ACM Transactions on Graphics 27(3) (2008)Google Scholar
  17. 17.
    Spillmann, J.: CORDE: Cosserat Rod Elements for the Animation of Interacting Elastic Rods PhD Thesis (2008)Google Scholar
  18. 18.
    Chipperfield, A., et al.: Genetic Algorithm TOOLBOX For Use with MATLAB (1994)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Przemyslaw Korzeniowski
    • 1
  • Francisco Martinez-Martinez
    • 2
  • Niels Hald
    • 1
  • Fernando Bello
    • 1
  1. 1.Department of Surgery and CancerImperial College LondonUK
  2. 2.Inter-University Research Institute for Bioengineering and Human Centered TechnologyPolytechnic University of ValenciaSpain

Personalised recommendations