Advertisement

Preliminary Bone Sawing Model for a Virtual Reality-Based Training Simulator of Bilateral Sagittal Split Osteotomy

  • Thomas C. Knott
  • Raluca E. Sofronia
  • Marcus Gerressen
  • Yuen Law
  • Arjana Davidescu
  • George G. Savii
  • Karls H. Gatzweiler
  • Manfred Staat
  • Torsten W. Kuhlen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8789)

Abstract

Successful bone sawing requires a high level of skill and experience, which could be gained by the use of Virtual Reality-based simulators. A key aspect of these medical simulators is realistic force feedback. The aim of this paper is to model the bone sawing process in order to develop a valid training simulator for the bilateral sagittal split osteotomy, the most often applied corrective surgery in case of a malposition of the mandible. Bone samples from a human cadaveric mandible were tested using a designed experimental system. Image processing and statistical analysis were used for the selection of four models for the bone sawing process. The results revealed a polynomial dependency between the material removal rate and the applied force. Differences between the three segments of the osteotomy line and between the cortical and cancellous bone were highlighted.

Keywords

Bone sawing virtual reality training simulator bilateral sagittal split osteotomy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brydone, A.S., Meek, D., Maclaine, S.: Bone grafting, orthopaedic biomaterials, and the clinical need for bone engineering. Proceedings of Inst. Mech. Eng. H 224, 1329–1343 (2010)CrossRefGoogle Scholar
  2. 2.
    Arbabtafti, M., Moghaddam, M., Nahvi, A., et al.: Physics-based haptic simulation of bone machining. IEEE Transactions on Haptics 4(1), 39–50 (2011)CrossRefGoogle Scholar
  3. 3.
    Hsieh, M.S., Tsai, M.D., Yeh, Y.: An amputation simulator with bone sawing haptic interaction. Biomedical Engineering: Applications, Basis and Communications 18, 229–236 (2006)Google Scholar
  4. 4.
    Agus, M.: Haptic and visual simulation of bone dissection. Ph.D. Thesis, Universita degli Studi di Cagliari, Italy (2004)Google Scholar
  5. 5.
    Wang, Q., Chen, H., Wu, J.H., et al.: Dynamic touch-enable bone drilling interaction. In: 5th International Conference on Information Technology and Applications in Biomedicine, Shenzhen, China, pp. 457–460 (2008)Google Scholar
  6. 6.
    Jacobs, C.H., Pope, M.H., Berry, J.T., et al.: A study of the bone machining process orthogonal cutting. Journal of Biomechanics 7(2), 131–136 (1974)CrossRefGoogle Scholar
  7. 7.
    Plaskos, C., Hodgson, A.J., Cinquin, P.: Modelling and optimization of bone-cutting forces in orthopaedic surgery. In: Ellis, R.E., Peters, T.M. (eds.) MICCAI 2003. LNCS, vol. 2878, pp. 254–261. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Ong, F.R., Bouazza-Marouf, K.: Evaluation of bone strength: Correlation between measurements of bone mineral density and drilling force. Proceedings of the Institution of Mechanical Engineers. Part H, Journal of Engineering in Medicine 214(4), 385–399 (2000)CrossRefGoogle Scholar
  9. 9.
    Schwartz-Dabney, C.L., Dechow, P.C.: Variations in cortical material properties throughout the human dentate mandible. American Journal of Physical Anthropology 120, 252–277 (2003)CrossRefGoogle Scholar
  10. 10.
    Seong, W.J., Kim, U.K., Swift, J.: Elastic properties and apparent density of human edentulous maxilla and mandible. International Journal of Oral and Maxillofacial Surgery 38, 1088–1093 (2009)CrossRefGoogle Scholar
  11. 11.
    Misch, C.E., Qu, Z., Bidez, M.W.: Mechanical properties of trabecular bone in the human mandible: implications for dental implant treatment planning and surgical placement. Journal of Oral and Maxillofacial Surgery 57(6), 700–706 (1999)CrossRefGoogle Scholar
  12. 12.
    Van Eijden, T.M.: Biomechanics of the mandible. Critical Reviews in Oral Biology and Medicine 11, 123–136 (2000)CrossRefGoogle Scholar
  13. 13.
    Nomura, T., Gold, E., Powers, M.P., et al.: Micromechanics/structure relationships in the human mandible. Dental Materials 19, 167–173 (2003)CrossRefGoogle Scholar
  14. 14.
    Gerressen, M., Zadeh, M.D., Stockbrink, G., et al.: The functional long-term results after bilateral sagittal split osteotomy (BSSO) with and without a condylar positioning device. Journal of Oral and Maxillofacial Surgery 64, 1624–1630 (2006)CrossRefGoogle Scholar
  15. 15.
    Boothroyd, G., Knight, W.A.: Fundamentals of Machining and Machine Tools. Marcel Dekker, New York (1989)Google Scholar
  16. 16.
    Groover, M.P.: Fundamentals of Modern Manufacturing: Materials, Processes and Systems, 4th edn. Wiley, New York (2010)Google Scholar
  17. 17.
    Sofronia, R., Knott, T., Davidescu, A., Savii, G., Kuhlen, T., Gerressen, M.: Failure mode and effects analysis in designing a virtual reality-based training simulator for bilateral sagittal split osteotomy, International Journal of Medical Robotics and Computer Assisted Surgery 9(1), e1–9 (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Thomas C. Knott
    • 1
  • Raluca E. Sofronia
    • 2
  • Marcus Gerressen
    • 3
  • Yuen Law
    • 1
  • Arjana Davidescu
    • 2
  • George G. Savii
    • 2
  • Karls H. Gatzweiler
    • 4
  • Manfred Staat
    • 4
  • Torsten W. Kuhlen
    • 1
  1. 1.Virtual Reality GroupRWTH Aachen UniversityGermany
  2. 2.Department of MechatronicsPolitehnica University of TimisoaraRomania
  3. 3.Department of Oral Maxillofacial and Plastic Facial SurgeryUniversity Hospital of AachenGermany
  4. 4.Biomechanics LaboratoryAachen University of Applied SciencesGermany

Personalised recommendations