Towards Armstrong-Style Inference System for Attribute Implications with Temporal Semantics

  • Jan Triska
  • Vilem Vychodil
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8825)

Abstract

We show a complete axiomatization of a logic of attribute implications describing dependencies between attributes of objects which are observed in consecutive points in time. The attribute implications we consider are if-then formulas expressing presence of attributes of objects relatively in time. The semantics of the attribute implications is defined based on presence/absence of attributes of objects in consecutive points of time. The presented results extend the classic results on Armstrong-style completeness of the logic of attribute implications by using the time points as additional component. The ordinary results can be seen as special case of our results when only a single time point is considered.

Keywords

attribute implication axiomatization formal context temporal semantics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of items in large databases. In: Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data, SIGMOD 1993, pp. 207–216. ACM, New York (1993)CrossRefGoogle Scholar
  2. 2.
    Armstrong, W.W.: Dependency structures of data base relationships. In: Rosenfeld, J.L., Freeman, H. (eds.) Information Processing 1974: Proceedings of IFIP Congress, pp. 580–583. North Holland, Amsterdam (1974)Google Scholar
  3. 3.
    Bettini, C., Jajodia, S., Wang, X.S.: Time Granularities in Databases, Data Mining, and Temporal Reasoning. Springer (2000)Google Scholar
  4. 4.
    Cordero, P., Mora, A., de Guzmán, I.P., Enciso, M.: Non-deterministic ideal operators: An adequate tool for formalization in data bases. Discrete Applied Mathematics 156(6), 911–923 (2008)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Date, C.J., Darwen, H., Lorentzos, N.A.: Temporal Data and the Relational Model. Elsevier (2002)Google Scholar
  6. 6.
    Fagin, R.: Functional dependencies in a relational database and propositional logic. IBM Journal of Research and Development 21(6), 534–544 (1977)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Feng, L., Dillon, T., Liu, J.: Inter-transactional association rules for multi-dimensional contexts for prediction and their application to studying meterological data. Data Knowl. Eng. 37(1), 85–115 (2001)CrossRefMATHGoogle Scholar
  8. 8.
    Feng, L., Yu, J.X., Lu, H., Han, J.: A template model for multidimensional inter-transactional association rules. The VLDB Journal 11(2), 153–175 (2002)CrossRefGoogle Scholar
  9. 9.
    Gabbay, D.M.: Tense systems with discrete moments of time, part I. Journal of Philosophical Logic 1(1), 35–44 (1972)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Gabbay, D.M.: Model theory for tense logics. Annals of Mathematical Logic 8(1-2), 185–236 (1975)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations, 1st edn. Springer-Verlag New York, Inc., Secaucus (1997)Google Scholar
  12. 12.
    Ganter, B., Obiedkov, S.: Implications in triadic formal contexts. In: Wolff, K.E., Pfeiffer, H.D., Delugach, H.S. (eds.) ICCS 2004. LNCS (LNAI), vol. 3127, pp. 186–195. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  13. 13.
    Guigues, J.L., Duquenne, V.: Familles minimales d’implications informatives resultant d’un tableau de données binaires. Math. Sci. Humaines 95, 5–18 (1986)MathSciNetGoogle Scholar
  14. 14.
    Huang, Y.P., Kao, L.J., Sandnes, F.E.: Efficient mining of salinity and temperature association rules from argo data. Expert Syst. Appl. 35(1-2), 59–68 (2008)CrossRefGoogle Scholar
  15. 15.
    Lee, A.J.T., Wang, C.S., Weng, W.Y., Chen, Y.A., Wu, H.W.: An efficient algorithm for mining closed inter-transaction itemsets. Data Knowl. Eng. 66(1), 68–91 (2008)CrossRefGoogle Scholar
  16. 16.
    Lee, A.J.T., Wu, H.W., Lee, T.Y., Liu, Y.H., Chen, K.T.: Mining closed patterns in multi-sequence time-series databases. Data Knowl. Eng. 68(10), 1071–1090 (2009)CrossRefGoogle Scholar
  17. 17.
    Lehmann, F., Wille, R.: A triadic approach to formal concept analysis. In: Ellis, G., Rich, W., Levinson, R., Rich, W., Sowa, J.F. (eds.) ICCS 1995. LNCS, vol. 954, pp. 32–43. Springer, Heidelberg (1995)Google Scholar
  18. 18.
    Lloyd, J.W.: Foundations of Logic Programming. Springer-Verlag New York, Inc., New York (1984)CrossRefMATHGoogle Scholar
  19. 19.
    Lu, H., Feng, L., Han, J.: Beyond intratransaction association analysis: Mining multidimensional intertransaction association rules. ACM Trans. Inf. Syst. 18(4), 423–454 (2000)CrossRefGoogle Scholar
  20. 20.
    Maier, D.: Theory of Relational Databases. Computer Science Pr., Rockville (1983)Google Scholar
  21. 21.
    Tung, A.K., Lu, H., Han, J., Feng, L.: Breaking the barrier of transactions: Mining inter-transaction association rules. In: Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 1999, pp. 297–301. ACM, New York (1999)Google Scholar
  22. 22.
    Wille, R.: Restructuring lattice theory: An approach based on hierarchies of concepts. In: Rival, I. (ed.) Ordered Sets. NATO Advanced Study Institutes Series, vol. 83, pp. 445–470. Springer, Netherlands (2009)Google Scholar
  23. 23.
    Zaki, M.J.: Mining non-redundant association rules. Data Mining and Knowledge Discovery 9, 223–248 (2004)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Jan Triska
    • 1
  • Vilem Vychodil
    • 1
  1. 1.Dept. Computer SciencePalacky University, OlomoucOlomoucCzech Republic

Personalised recommendations