Skip to main content

Real-Time Pathfinding in Unknown Terrain via Reconnection with an Ideal Tree

  • Conference paper
  • First Online:
Advances in Artificial Intelligence -- IBERAMIA 2014 (IBERAMIA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8864))

Included in the following conference series:

Abstract

In real-time pathfinding in unknown terrain an agent is required to solve a pathfinding problem by alternating a time-bounded deliberation phase with an action execution phase. Real-time heuristic search algorithms are designed for general search applications with time constraints but unfortunately in pathfinding they are known to produce poor-quality solutions. In this paper we propose \(\mathrm{p-FRIT }_\mathrm{{RT}}\), a real-time version of FRIT, a recently proposed algorithm able to produce very good-quality solutions in pathfinding under strict, but not fully real-time constraints. The idea underlying \(\mathrm{p-FRIT }_\mathrm{{RT}}\) draws inspiration from bug algorithms, a family of pathfinding algorithms. Yet, as we show, \(\mathrm{p-FRIT }_\mathrm{{RT}}\) is able to outperform a well-known bug algorithm and is able to solve graph search problems that are more general than pathfinding. \(\mathrm{p-FRIT }_\mathrm{{RT}}\) also outperforms significantly—generating solutions six times shorter when time constraints are tight—a previously proposed real-time version of FRIT and the real-time heuristic search algorithm that is considered to have state-of-the-art performance in real-time pathfinding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bulitko, V., Björnsson, Y., Sturtevant, N., Lawrence, R.: Applied Research in Artificial Intelligence for Computer Games. In: Real-time Heuristic Search for Game Pathfinding, pp. 1–30. Springer (2011)

    Google Scholar 

  2. Korf, R.E.: Real-time heuristic search. Artificial Intelligence 42(2–3), 189–211 (1990)

    Article  MATH  Google Scholar 

  3. Ishida, T.: Moving target search with intelligence. In: Proc. of the 10th National Conf. on Artificial Intelligence (AAAI), pp. 525–532 (1992)

    Google Scholar 

  4. Rivera, N., Illanes, L., Baier, J.A., Hernández, C.: Reconnecting with the ideal tree: An alternative to heuristic learning in real-time search. In: Proc. of the 6th Symposium on Combinatorial Search (SoCS) (2013)

    Google Scholar 

  5. Rivera, N., Illanes, L., Baier, J.A., Hernández, C.: Reconnection with the ideal tree: A new approach to real-time search. Journal of Artificial Intelligence Research 50, 235–264 (2014)

    MATH  Google Scholar 

  6. LaValle, S.M.: Planning algorithms. Cambridge University Press (2006)

    Google Scholar 

  7. Hart, P.E., Nilsson, N., Raphael, B.: A formal basis for the heuristic determination of minimal cost paths. IEEE Transactions on Systems Science and Cybernetics 4(2), 100–107 (1968)

    Article  Google Scholar 

  8. Koenig, S., Likhachev, M.: Real-time Adaptive A*. In: Proc. of the 5th Int’l Joint Conf. on Autonomous Agents and Multi Agent Systems (AAMAS), pp. 281–288 (2006)

    Google Scholar 

  9. Hernández, C., Meseguer, P.: LRTA*(\(k\)). In: Proc. of the 19th int’l Joint Conf. on Artificial Intelligence (IJCAI), pp. 1238–1243 (2005)

    Google Scholar 

  10. Hernández, C., Meseguer, P.: Improving LRTA*(\(k\)). In: Proc. of the 20th Int’l Joint Conf. on Artificial Intelligence (IJCAI), pp. 2312–2317 (2007)

    Google Scholar 

  11. Koenig, S., Sun, X.: Comparing real-time and incremental heuristic search for real-time situated agents. Autonomous Agents and Muti-Agent Systems 18(3), 313–341 (2009)

    Article  Google Scholar 

  12. Hernández, C., Baier, J.A.: Avoiding and escaping depressions in real-time heuristic search. Journal of Artificial Intelligence Research 43, 523–570 (2012)

    MATH  MathSciNet  Google Scholar 

  13. Zelinsky, A.: A mobile robot exploration algorithm. IEEE Transactions on Robotics and Automation 8(6), 707–717 (1992)

    Article  Google Scholar 

  14. Lumelsky, V.J., Stepanov, A.A.: Path-planning strategies for a point mobile automaton moving amidst unknown obstacles of arbitrary shape. Algorithmica 2, 403–430 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  15. Sturtevant, N.R.: Benchmarks for grid-based pathfinding. IEEE Transactions Computational Intelligence and AI in Games 4(2), 144–148 (2012)

    Article  Google Scholar 

  16. Harabor, D.D., Grastien, A.: Online graph pruning for pathfinding on grid maps. In: Proc. of the 26th AAAI Conf. onArtificial Intelligence (AAAI) (2011)

    Google Scholar 

  17. Uras, T., Koenig, S., Hernández, C.: Subgoal graphs for optimal pathfinding in eight-neighbor grids. In: Proc. of the 23rd Int’l Conf. on Automated Planning and Scheduling (ICAPS) (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolás Rivera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Rivera, N., Illanes, L., Baier, J.A. (2014). Real-Time Pathfinding in Unknown Terrain via Reconnection with an Ideal Tree. In: Bazzan, A., Pichara, K. (eds) Advances in Artificial Intelligence -- IBERAMIA 2014. IBERAMIA 2014. Lecture Notes in Computer Science(), vol 8864. Springer, Cham. https://doi.org/10.1007/978-3-319-12027-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12027-0_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12026-3

  • Online ISBN: 978-3-319-12027-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics