Linked Open Data-Enabled Recommender Systems: ESWC 2014 Challenge on Book Recommendation

  • Tommaso Di NoiaEmail author
  • Iván Cantador
  • Vito Claudio Ostuni
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 475)


In this chapter we present a report of the ESWC 2014 Challenge on Linked Open Data-enabled Recommender Systems, which consisted of three tasks in the context of book recommendation: rating prediction in cold-start situations, top N recommendations from binary user feedback, and diversity in content-based recommendations. Participants were requested to address the tasks by means of recommendation approaches that made use of Linked Open Data and semantic technologies. In the chapter we describe the challenge motivation, goals and tasks, summarize and compare the nine final participant recommendation approaches, and discuss their experimental results and lessons learned. Finally, we end with some conclusions and potential lines of future research.


Recommender System Recommendation Method Link Open Data Recommendation List Recommendation Approach 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank all participants for their interest in the challenge, their submissions, and presentations and discussion during the conference. We also thank the program committee members for their valuable reviews of submissions, and Valentina Presutti and Milan Stankovic for their help with the organization of the challenge.


  1. 1.
    Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.G.: DBpedia: a nucleus for a Web of open data. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L.J.B., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Ampazis, N., Emmanouilidis, T.: Exploring semantic features for producing top-N recommendation lists from binary user feedback. In: Presutti, V., et al. (eds.) SemWebEval 2014, CCIS, vol. 475, pp. 157–162. Springer, Heidelberg (2014)Google Scholar
  3. 3.
    Basile, P., Musto, C., De Gemmis, M., Lops, P., Narducci, F., Semeraro, G.: Aggregation strategies for linked open data-enabled recommender systems. In: Presutti, V., et al. (eds.) European Semantic Web Conference (Satellite Events) (2014), CCIS, vol. 475, Springer, Heidelberg (2014)Google Scholar
  4. 4.
    Bizer, C., Heath, T., Berners-Lee, T.: Linked data - the story so far. Int. J. Semant. Web Inf. Syst. 5(3), 1–22 (2009)CrossRefGoogle Scholar
  5. 5.
    Burke, R.D.: Hybrid recommender systems: survey and experiments. User Model. User-Adap. Inter. 12(4), 331–370 (2002)CrossRefzbMATHGoogle Scholar
  6. 6.
    Di Noia, T., Mirizzi, R., Ostuni, V.C., Romito, D., Zanker, M.: Linked open data to support content-based recommender systems. In: Proceedings of the 8th International Conference on Semantic Systems, pp. 1–8 (2012)Google Scholar
  7. 7.
    Heitmann, B., Hayes, C.: SemStim at the LOD-RecSys 2014 Challenge. In: Presutti, V., et al. (eds.) SemWebEval 2014, CCIS, vol. 475, pp. 170–175. Springer, Heidelberg (2014)Google Scholar
  8. 8.
    Kunaver, M., Pozrl, T., Dobravec, S., Kosir, A., Droftina, U.: Increasing top 20 diversity through recommendation post-processing. In: Presutti, V., et al. (eds.) SemWebEval 2014, CCIS, vol. 475, pp. 188–192. Springer, Heidelberg (2014)Google Scholar
  9. 9.
    Maccatrozzo, V., Ceolin, D., Aroyo, L., Groth, P.: A semantic pattern-based recommender. In: Presutti, V., et al. (eds.) SemWebEval 2014, CCIS, vol. 475, pp. 182–187. Springer, Heidelberg (2014)Google Scholar
  10. 10.
    Moreno, A., Ariza-Porras, C., Lago, P., Jiménez-Guarín, C.L., Castro, H., Riveill, M.: Hybrid model rating prediction with linked open data for recommender systems. In: Presutti, V., et al. (eds.) SemWebEval 2014, CCIS, vol. 475, pp. 193–198. Springer, Heidelberg (2014)Google Scholar
  11. 11.
    Peska, L., Vojtas, P.: Hybrid recommending exploiting multiple DBpedia language editions. In: Presutti, V., et al. (eds.) SemWebEval 2014, CCIS, vol. 475, pp. 144–149. Springer, Heidelberg (2014)Google Scholar
  12. 12.
    Ricci, F., Rokach, L., Shapira, B., Kantor, P.B.: Recommender Systems Handbook. Springer, Heidelberg (2011)CrossRefzbMATHGoogle Scholar
  13. 13.
    Ristoski, P., Mencía, E.L., Paulheim, H.: A hybrid multi-strategy recommender system using linked open data. In: Presutti, V., et al. (eds.) SemWebEval 2014, CCIS, vol. 475, pp. 150–156. Springer, Heidelberg (2014)Google Scholar
  14. 14.
    Schuhmacher, M., Meilicke, C.: Popular books and linked data: some results for the ESWC’14 RecSys challenge. In: Presutti, V., et al. (eds.) SemWebEval 2014, CCIS, vol. 475, pp. 176–181. Springer, Heidelberg (2014)Google Scholar
  15. 15.
    Ziegler, C.-N., McNee, S.M., Konstan, J.A., Lausen, G.: Improving recommendation lists through topic diversification. In: Proceedings of the 14th International Conference on World Wide Web, pp. 22–32 (2005)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Tommaso Di Noia
    • 1
    Email author
  • Iván Cantador
    • 2
  • Vito Claudio Ostuni
    • 1
  1. 1.Department of Electrical and Electronic EngineeringPolitecnico di BariBariItaly
  2. 2.Department of Computer ScienceUniversidad Autónoma de MadridMadridSpain

Personalised recommendations