Dynamic List of Clusters in Secondary Memory

  • Gonzalo Navarro
  • Nora Reyes
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8821)


We introduce a dynamic and secondary-memory-based variant of the List of Clusters, which is shown to be competitive with the literature, especially on higher-dimensional spaces, where it outperforms the M-tree in searches and I/Os used for insertions. The basic principles of our design are applicable to other secondary-memory structures.


Main Memory Construction Cost Distance Computation Range Query Search Cost 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chávez, E., Navarro, G.: A compact space decomposition for effective metric indexing. Pattern Recognition Letters 26(9), 1363–1376 (2005)CrossRefGoogle Scholar
  2. 2.
    Chávez, E., Navarro, G., Baeza-Yates, R., Marroquín, J.: Searching in metric spaces. ACM Computing Surveys 33(3), 273–321 (2001)CrossRefGoogle Scholar
  3. 3.
    Ciaccia, P., Patella, M., Zezula, P.: M-tree: an efficient access method for similarity search in metric spaces. In: Proc. 23rd VLDB, pp. 426–435 (1997)Google Scholar
  4. 4.
    Dohnal, V., Gennaro, C., Savino, P., Zezula, P.: D-index: Distance searching index for metric data sets. Multimedia Tools and Applications 21(1), 9–33 (2003)CrossRefGoogle Scholar
  5. 5.
    Santos Filho, R.F., Traina, A.J.M., Traina Jr., C., Faloutsos, C.: Similarity search without tears: The OMNI family of all-purpose access methods. In: Proc. 17th ICDE, pp. 623–630 (2001)Google Scholar
  6. 6.
    Hetland, M.L.: The basic principles of metric indexing. In: Coello, C.A.C., Dehuri, S., Ghosh, S. (eds.) Swarm Intelligence for Multi-objective Problems in Data Mining. SCI, vol. 242, pp. 199–232. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Hjaltason, G., Samet, H.: Index-driven similarity search in metric spaces. ACM Transactions on Database Systems 28(4), 517–580 (2003)CrossRefGoogle Scholar
  8. 8.
    Jagadish, H.V., Ooi, B.C., Tan, K.-L., Yu, C., Zhang, R.: iDistance: An adaptive B+-tree based indexing method for nearest neighbor search. ACM Transactions on Database Systems 30(2), 364–397 (2005)CrossRefGoogle Scholar
  9. 9.
    Mamede, M.: Recursive lists of clusters: A dynamic data structure for range queries in metric spaces. In: Yolum, p., Güngör, T., Gürgen, F., Özturan, C. (eds.) ISCIS 2005. LNCS, vol. 3733, pp. 843–853. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Navarro, G., Reyes, N.: Dynamic spatial approximation trees. ACM Journal of Experimental Algorithmics 12:article 1.5 (2009)Google Scholar
  11. 11.
    Navarro, G., Reyes, N.: Dynamic spatial approximation trees for massive data. In: Proc. 2nd SISAP, pp. 81–88 (2009)Google Scholar
  12. 12.
    Navarro, G., Uribe, R.: Fully dynamic metric access methods based on hyperplane partitioning. Information Systems 36(4), 734–747 (2011)CrossRefGoogle Scholar
  13. 13.
    Ruiz, G., Santoyo, F., Chávez, E., Figueroa, K., Tellez, E.S.: Extreme pivots for faster metric indexes. In: Brisaboa, N., Pedreira, O., Zezula, P. (eds.) SISAP 2013. LNCS, vol. 8199, pp. 115–126. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  14. 14.
    Samet, H.: Foundations of Multidimensional and Metric Data Structures. Morgan Kaufmann Publishers Inc. (2005)Google Scholar
  15. 15.
    Skopal, T., Pokorný, J., Snásel, V.: PM-tree: Pivoting metric tree for similarity search in multimedia databases. In: ADBIS (Local Proceedings) (2004)Google Scholar
  16. 16.
    Zezula, P., Amato, G., Dohnal, V., Batko, M.: Similarity Search: The Metric Space Approach. Advances in Database Systems, vol. 32. Springer (2006)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Gonzalo Navarro
    • 1
  • Nora Reyes
    • 2
  1. 1.Center of Biotechnology and Bioengineering, Department of Computer ScienceUniversity of ChileChile
  2. 2.Departamento de InformáticaUniversidad Nacional de San LuisArgentina

Personalised recommendations