Some Theoretical and Experimental Observations on Permutation Spaces and Similarity Search

  • Giuseppe Amato
  • Fabrizio Falchi
  • Fausto Rabitti
  • Lucia Vadicamo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8821)

Abstract

Permutation based approaches represent data objects as ordered lists of predefined reference objects. Similarity queries are executed by searching for data objects whose permutation representation is similar to the query one. Various permutation-based indexes have been recently proposed. They typically allow high efficiency with acceptable effectiveness. Moreover, various parameters can be set in order to find an optimal trade-off between quality of results and costs.

In this paper we studied the permutation space without referring to any particular index structure focusing on both theoretical and experimental aspects. We used both synthetic and real-word datasets for our experiments. The results of this work are relevant in both developing and setting parameters of permutation-based similarity searching approaches.

Keywords

permutation-based indexing similarity search content based image retrieval 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amato, G., Bolettieri, P., Falchi, F., Gennaro, C., Rabitti, F.: Combining local and global visual feature similarity using a text search engine. In: 2011 9th International Workshop on Content-Based Multimedia Indexing (CBMI), pp. 49–54. IEEE Computer Society (2011)Google Scholar
  2. 2.
    Amato, G., Esuli, A., Falchi, F.: Pivot selection strategies for permutation-based similarity search. In: Brisaboa, N., Pedreira, O., Zezula, P. (eds.) SISAP 2013. LNCS, vol. 8199, pp. 91–102. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  3. 3.
    Amato, G., Gennaro, C., Savino, P.: Mi-file: using inverted files for scalable approximate similarity search. In: Multimedia Tools and Applications, pp. 1–30 (2012)Google Scholar
  4. 4.
    Amato, G., Savino, P.: Approximate similarity search in metric spaces using inverted files. In: Proceedings of the 3rd International Conference on Scalable Information Systems, InfoScale 2008, pp. 28:1–28:10. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering) (2008)Google Scholar
  5. 5.
    Batko, M., Falchi, F., Lucchese, C., Novak, D., Perego, R., Rabitti, F., Sedmidubsky, J., Zezula, P.: Building a web-scale image similarity search system. Multimedia Tools and Applications 47(3), 599–629 (2010)CrossRefGoogle Scholar
  6. 6.
    Batko, M., Kohoutková, P., Novak, D.: CoPhIR image collection under the microscope. In: Skopal, T., Zezula, P. (eds.) Second International Workshop on Similarity Search and Applications, SISAP 2009, pp. 47–54. IEEE Computer Society (2009)Google Scholar
  7. 7.
    Bolettieri, P., Esuli, A., Falchi, F., Lucchese, C., Perego, R., Piccioli, T., Rabitti, F.: CoPhIR: a test collection for content-based image retrieval. CoRR abs/0905.4627 (2009)Google Scholar
  8. 8.
    Chávez, E., Figueroa, K., Navarro, G.: Effective proximity retrieval by ordering permutations. IEEE Transactions on Pattern Analysis and Machine Intelligence 30(9), 1647–1658 (2008)CrossRefGoogle Scholar
  9. 9.
    Chávez, E., Navarro, G.: Measuring the dimensionality of general metric spaces. Department of Computer Science, University of Chile, Tech. Rep. TR/DCC-00-1 (2000)Google Scholar
  10. 10.
    Chávez, E., Navarro, G., Baeza-Yates, R., Marroquín, J.L.: Searching in metric spaces. ACM Computing Surveys 33(3), 273–321 (2001)CrossRefGoogle Scholar
  11. 11.
    Diaconis, P.: Group representations in probability and statistics. Lecture Notes-Monograph Series, vol. 11. Institute of Mathematical Statistics (1988)Google Scholar
  12. 12.
    Diaconis, P., Graham, R.L.: Spearman’s footrule as a measure of disarray. Journal of the Royal Statistical Society. Series B (Methodological) 39(2), 262–268 (1977)MathSciNetMATHGoogle Scholar
  13. 13.
    Esuli, A.: MiPai: Using the PP-index to build an efficient and scalable similarity search system. In: Skopal, T., Zezula, P. (eds.) Second International Workshop on Similarity Search and Applications, SISAP 2009, pp. 146–148. IEEE Computer Society (2009)Google Scholar
  14. 14.
    Esuli, A.: Use of permutation prefixes for efficient and scalable approximate similarity search. Information Processing & Management 48(5), 889–902 (2012)CrossRefGoogle Scholar
  15. 15.
    Fagin, R., Kumar, R., Sivakumar, D.: Comparing top k lists. In: Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2003, pp. 28–36. Society for Industrial and Applied Mathematics (2003)Google Scholar
  16. 16.
    Gaiha, P., Gupta, S.K.: Adjacent vertices on a permutohedron. SIAM Journal on Applied Mathematics 32(2), 323–327 (1977)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Gennaro, C., Amato, G., Bolettieri, P., Savino, P.: An approach to content-based image retrieval based on the lucene search engine library. In: Lalmas, M., Jose, J., Rauber, A., Sebastiani, F., Frommholz, I. (eds.) ECDL 2010. LNCS, vol. 6273, pp. 55–66. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  18. 18.
    Mohamed, H., Marchand-Maillet, S.: Parallel approaches to permutation-based indexing using inverted files. In: Navarro, G., Pestov, V. (eds.) SISAP 2012. LNCS, vol. 7404, pp. 148–161. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  19. 19.
    Mohamed, H., Marchand-Maillet, S.: Quantized ranking for permutation-based indexing. In: Brisaboa, N., Pedreira, O., Zezula, P. (eds.) SISAP 2013. LNCS, vol. 8199, pp. 103–114. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  20. 20.
    Novak, D., Kyselak, M., Zezula, P.: On locality-sensitive indexing in generic metric spaces. In: Proceedings of the Third International Conference on Similarity Search and Applications, SISAP 2010, pp. 59–66. ACM (2010)Google Scholar
  21. 21.
    Santmyer, J.: For all possible distances look to the permutohedron. Mathematics Magazine 80(2), 120–125 (2007)MathSciNetMATHGoogle Scholar
  22. 22.
    Tellez, E.S., Chavez, E., Navarro, G.: Succinct nearest neighbor search. Information Systems 38(7), 1019–1030 (2013)CrossRefGoogle Scholar
  23. 23.
    Ziegler, G.M.: Lectures on Polytopes. Graduate Texts in Mathematics. Springer, New York (1995)CrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Giuseppe Amato
    • 1
  • Fabrizio Falchi
    • 1
  • Fausto Rabitti
    • 1
  • Lucia Vadicamo
    • 1
  1. 1.Istituto di Scienza e Tecnologie dell’Informazione “A. Faedo”PisaItaly

Personalised recommendations