Entity Recognition for Duplicate Filtering

  • J. A. Cordero Cruz
  • Sara E. Garza
  • S. E. Schaeffer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8821)

Abstract

We propose a system for automatic detection of duplicate entries in a repository of semi-structured text documents. The proposed system employs text-entity recognition to extract information regarding time, location, names of persons and organizations, as well as events described within the document content. With structured representations of the content, called “metamodels”, we group the entries into clusters based on the similarity of the contents. Then we apply machine-learning algorithms to the clusters to carry out duplicate detection. We present results regarding precision, recall, and F-value of the proposed system.

Keywords

entity recognition duplicate detection Twitter 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agarwal, P., Vaithiyanathan, R., Sharma, S., Shroff, G.: Catching the long-tail: Extracting local news events from Twitter. In: Proc. of the 6th International AAAI Conference on Weblogs and Social Media, Palo Alto, CA, USA, pp. 379–382. AAAI (2012)Google Scholar
  2. 2.
    Baeza-Yates, R., Ribeiro-Neto, B.: Modern information retrieval. ACM Press, New York (1999)Google Scholar
  3. 3.
    Bishop, C.: Pattern Recognition and Machine Learning. Information Science and Statistics. Springer, New York (2006)MATHGoogle Scholar
  4. 4.
    Church, K.: A stochastic parts program and noun phrase parser for unrestricted text. In: Proc. of the 2nd Conference on Applied Natural Language Processing, Stroudsburg, PA, USA, pp. 136–143. Association for Computational Linguistics (1988)Google Scholar
  5. 5.
    Duda, R., Hart, P., Stork, D.: Pattern Classification, 2nd edn. Wiley-Interscience, New York (2000)Google Scholar
  6. 6.
    Esposito, R., Radicioni, D.: CarpeDiem: Optimizing the Viterbi algorithm and applications to supervised sequential learning. The Journal of Machine Learning Research 10, 1851–1880 (2009)MathSciNetMATHGoogle Scholar
  7. 7.
    Gong, C., Huang, Y., Cheng, X., Bai, S.: Detecting near-duplicates in large-scale short text databases. In: Washio, T., Suzuki, E., Ting, K.M., Inokuchi, A. (eds.) PAKDD 2008. LNCS (LNAI), vol. 5012, pp. 877–883. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Hall, P., Dowling, G.: Approximate string matching. ACM Computing Surveys 12(4), 381–402 (1980)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd edn. Springer Series in Statistics. Springer, New York (2009)CrossRefGoogle Scholar
  10. 10.
    Jurafsky, D., Martin, J.: Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition. Prentice Hall PTR, Upper Saddle River (2000)Google Scholar
  11. 11.
    Levenshtein, V.: Binary codes capable of correcting deletions, insertions and reversals. Soviet Physics Doklady 10, 707 (1966)MathSciNetGoogle Scholar
  12. 12.
    Manning, C., Raghavan, P., Schütze, H.: Introduction to Information Retrieval. Cambridge University Press (2008)Google Scholar
  13. 13.
    Ponomareva, N., Rosso, P., Pla, F., Molina, A.: Conditional random fields vs. hidden Markov models in a biomedical named entity recognition task. In: Proc. of International Conference Recent Advances in Natural Language Processing, Borovets, Bulgaria, pp. 479–483. RANLP 2007 Organising Committee (2007)Google Scholar
  14. 14.
    Ratinov, L., Roth, D.: Design challenges and misconceptions in named entity recognition. In: Proc. of the 13th Conference on Computational Natural Language Learning, Stroudsburg, PA, USA, pp. 147–155. Association for Computational Linguistics (2009)Google Scholar
  15. 15.
    Ritter, A., Clark, S., Mausam, Etzioni, O.: Named entity recognition in tweets: An experimental study. In: Proc. of the Conference on Empirical Methods in Natural Language Processing, Stroudsburg, PA, USA, pp. 1524–1534. Association for Computational Linguistics (2011)Google Scholar
  16. 16.
    Ross, S.: A first course in probability. Pearson Prentice Hall, Harlow (2010)Google Scholar
  17. 17.
    Sankaranarayanan, J., Samet, H., Teitler, B., Lieberman, M., Sperling, J.: TwitterStand: News in tweets. In: Proc. of the 17th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 42–51. ACM, New York (2009)Google Scholar
  18. 18.
    Schleimer, S., Wilkerson, D.S., Aiken, A.: Winnowing: local algorithms for document fingerprinting. In: Proc. of the 2003 ACM SIGMOD International Conference on Management of Data, New York, NY, USA, pp. 76–85. ACM (2003)Google Scholar
  19. 19.
    Tao, K., Abel, F., Hauff, C., Houben, G.-J., Gadiraju, U.: Groundhog Day: Near-duplicate Detection on Twitter. In: Proc. of the 22nd International Conference on World Wide Web, Republic and Canton of Geneva, Switzerland, pp. 1273–1284. International World Wide Web Conferences Steering Committee (2013)Google Scholar
  20. 20.
    Weis, M., Naumann, F.: DogmatiX tracks down duplicates in xml. In: Proc. of the 2005 ACM SIGMOD International Conference on Management of Data, New York, NY, USA, pp. 431–442. ACM (2005)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • J. A. Cordero Cruz
    • 1
  • Sara E. Garza
    • 1
  • S. E. Schaeffer
    • 1
    • 2
    • 3
  1. 1.FIMEUANLSan Nicolás de los GarzaMexico
  2. 2.CIIDITUANLPIIT MonterreyMexico
  3. 3.HIIT, University of HelsinkiHelsinkiFinland

Personalised recommendations