Similarity for Natural Semantic Networks

  • Francisco Torres
  • Sara E. Garza
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8821)

Abstract

A natural semantic network (NSN) represents the knowledge of a group of persons with respect to a particular topic. NSN comparison would allow to discover how close one group is to the other in terms of expertise in the topic— for example, how close apprentices are to experts or students to teachers. We propose to model natural semantic networks as weighted bipartite graphs and to extract feature vectors from these graphs for calculating similarity between pairs of networks. By comparing a set of networks from different topics, we show the approach is feasible.

Keywords

natural semantic networks similarity bipartite graphs feature vectors 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baeza-Yates, R., Ribeiro-Neto, B.: Modern information retrieval. ACM Press, New York (1999)Google Scholar
  2. 2.
    Bergmann, R., Gil, Y.: Retrieval of semantic workflows with knowledge intensive similarity measures. In: Ram, A., Wiratunga, N. (eds.) ICCBR 2011. LNCS (LNAI), vol. 6880, pp. 17–31. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Bunke, H.: Graph matching: Theoretical foundations, algorithms, and applications. In: Proc. Vision Interface, vol. 2000, pp. 82–88 (2000)Google Scholar
  4. 4.
    Champin, P.-A., Solnon, C.: Measuring the similarity of labeled graphs. In: Ashley, K.D., Bridge, D.G. (eds.) ICCBR 2003. LNCS (LNAI), vol. 2689, pp. 80–95. Springer, Heidelberg (2003), http://liris.cnrs.fr/csolnon/publications/ICCBR03.pdf CrossRefGoogle Scholar
  5. 5.
    Dehmer, M., Emmert-Streib, F.: Comparing large graphs efficiently by margins of feature vectors. Applied Mathematics and Computation 188(2), 1699–1710 (2007)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Figueroa, J., González, G., Solís, V.: Una aproximación al problema del significado: las redes semánticas. Revista Latinoamericana de Psicología 13(3), 447–458 (1981)Google Scholar
  7. 7.
    Lopez, E.O., Theios, J.: Semantic analyzer of schemata organization (saso). Behavior Research Methods, Instruments, & Computers 24(2), 277–285 (1992)CrossRefGoogle Scholar
  8. 8.
    Newman, M.: Networks: An introduction. Oxford University Press (2010)Google Scholar
  9. 9.
    Qureshi, R.J., Ramel, J., Cardot, H., Mukherji, P.: Combination of symbolic and statistical features for symbols recognition. In: International Conference on Signal Processing, Communications and Networking, ICSCN 2007, pp. 477–482. IEEE (2007)Google Scholar
  10. 10.
    Miranda, M.P.S., de la Garza González, A., Ramirez, E.O.L.: Simulaciones computacionales sobre cuestiones ambientales en dos grupos de contraste. Liberabit 19(2), 223–233 (2013)Google Scholar
  11. 11.
    Torres, F., López, R.: Foraging information in webpages through meaning. International Journal of Good Conscience 5(2), 308–323 (2010) ISSN 1870-557XGoogle Scholar
  12. 12.
    Urdiales, M.E.: Sobre el esquema relacional de pareja en jovenes y adultos del área metropolitana de Monterrey. PhD thesis, Universidad Autónoma de Nuevo León (2009), http://uanl.vtlseurope.com/lib/item?id=chamo:224600&theme=UANL

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Francisco Torres
    • 1
  • Sara E. Garza
    • 1
  1. 1.Facultad de Ingeniería Mecánica y EléctricaUniversidad Autónoma de Nuevo LeónSan Nicolás de los GarzaMexico

Personalised recommendations