Retrieval of Binary Features in Image Databases: A Study

  • Johannes Niedermayer
  • Peer Kröger
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8821)


Many state-of-the art object recognition systems rely on local image features, sometimes hundreds per image, that describe the surroundings of detected interest points by a high-dimensional feature vector. To recognize objects, these systems have to match features detected in a query image against the features stored in a database containing millions or even billions of feature vectors. Hence, efficient matching is crucial for real applications. In the past, feature vectors were often real-valued, and therefore research focused on such feature representations. Present techniques, however, involve binary features to reduce memory consumption and to speed up the feature extraction stage. Matching such binary features received relatively little attention in the computer vision community. Often, either Locality Sensitive Hashing (LSH) or quantization-based techniques, that are known from real-valued features, are used. However, an in-depth evaluation of the involved parameters in binary space has, to the best of our knowledge, not yet been performed. In this paper, we aim at closing this research gap, providing valuable insights for application-oriented research.


Hash Function Cluster Center Query Processing Hash Table Range Query 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Achtert, E., Kriegel, H.P., Schubert, E., Zimek, A.: Interactive data mining with 3d-parallel-coordinate-trees. In: Proc. SIGMOD, pp. 1009–1012 (2013)Google Scholar
  2. 2.
    Ai, L.F., Yu, J.Q., He, Y.F., Guan, T.: High-dimensional indexing technologies for large scale content-based image retrieval: a review. Journal of Zhejiang University SCIENCE C 14(7), 505–520 (2013)CrossRefGoogle Scholar
  3. 3.
    Alahi, A., Ortiz, R., Vandergheynst, P.: Freak: Fast retina keypoint. In: Proc. CVPR, pp. 510–517. IEEE (2012)Google Scholar
  4. 4.
    Bradley, P.S., Mangasarian, O.L., Street, W.N.: Clustering via concave minimization. In: Proc. NIPS, pp. 368–374 (1996)Google Scholar
  5. 5.
    Chen, Y., Guan, T., Wang, C.: Approximate nearest neighbor search by residual vector quantization. Sensors 10(12), 11259–11273 (2010)CrossRefGoogle Scholar
  6. 6.
    Gálvez-López, D., Tardós, J.D.: Real-time loop detection with bags of binary words. In: Proc. IROS, pp. 51–58 (2011)Google Scholar
  7. 7.
    Gálvez-López, D., Tardós, J.D.: Bags of binary words for fast place recognition in image sequences. IEEE Transactions on Robotics 28(5), 1188–1197 (2012)CrossRefGoogle Scholar
  8. 8.
    He, K., Wen, F., Sun, J.: K-means hashing: An affinity-preserving quantization method for learning binary compact codes. In: Proc. CVPR, pp. 2938–2945 (2013)Google Scholar
  9. 9.
    Heo, J.P., Lee, Y., He, J., Chang, S.F., Yoon, S.E.: Spherical hashing. In: Proc. CVPR, pp. 2957–2964 (2012)Google Scholar
  10. 10.
    Indyk, P., Motwani, R.: Approximate nearest neighbors: Towards removing the curse of dimensionality. In: Proc. STOC, pp. 604–613 (1998)Google Scholar
  11. 11.
    Jégou, H., Douze, M., Schmid, C.: Product quantization for nearest neighbor search. IEEE PAMI 33(1), 117–128 (2011)CrossRefGoogle Scholar
  12. 12.
    Joly, A., Buisson, O.: Random maximum margin hashing. In: Proc. CVPR, pp. 873–880 (2011)Google Scholar
  13. 13.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)CrossRefGoogle Scholar
  14. 14.
    Luo, Q., Zhang, S., Huang, T., Gao, W., Tian, Q.: Scalable mobile search with binary phrase. In: Proc. ICIMCS, pp. 66–70 (2013)Google Scholar
  15. 15.
    Lv, Q., Josephson, W., Wang, Z., Charikar, M., Li, K.: Multi-probe lsh: Efficient indexing for high-dimensional similarity search. In: Proc. VLDB, pp. 950–961 (2007)Google Scholar
  16. 16.
    Muja, M., Lowe, D.G.: Fast matching of binary features. In: Proc. CRV, pp. 404–410 (2012)Google Scholar
  17. 17.
    Nistér, D., Stewénius, H.: Scalable recognition with a vocabulary tree. In: Proc. CVPR, pp. 2161–2168 (2006)Google Scholar
  18. 18.
    Norouzi, M., Punjani, A., Fleet, D.J.: Fast search in hamming space with multi-index hashing. In: Proc. CVPR, pp. 3108–3115 (2012)Google Scholar
  19. 19.
    Patella, M., Ciaccia, P.: Approximate similarity search: A multi-faceted problem. J. Discrete Algorithms 7(1), 36–48 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Paulevé, L., Jégou, H., Amsaleg, L.: Locality sensitive hashing: A comparison of hash function types and querying mechanisms. Pattern Recognition Letters 31(11), 1348–1358 (2010)CrossRefGoogle Scholar
  21. 21.
    Philbin, J., Chum, O., Isard, M., Sivic, J., Zisserman, A.: Object retrieval with large vocabularies and fast spatial matching. In: Proc. CVPR, pp. 1–8 (2007)Google Scholar
  22. 22.
    Philbin, J., Chum, O., Isard, M., Sivic, J., Zisserman, A.: Lost in quantization: Improving particular object retrieval in large scale image databases. In: Proc. CVPR, pp. 1–8 (2008)Google Scholar
  23. 23.
    Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: Orb: an efficient alternative to sift or surf. In: Proc. ICCV, pp. 2564–2571 (2011)Google Scholar
  24. 24.
    Schindler, G., Brown, M., Szeliski, R.: City-scale location recognition. In: Proc. CVPR, pp. 1–7 (2007)Google Scholar
  25. 25.
    Sivic, J., Zisserman, A.: Video google: A text retrieval approach to object matching in videos. In: Proc. ICCV, pp. 1470–1477 (2003)Google Scholar
  26. 26.
    Torralba, A., Fergus, R., Weiss, Y.: Small codes and large image databases for recognition. In: Proc. CVPR, pp. 1–8 (2008)Google Scholar
  27. 27.
    Trzcinski, T., Lepetit, V., Fua, P.: Thick boundaries in binary space and their influence on nearest-neighbor search. Pattern Recognition Letters 33(16), 2173–2180 (2012)CrossRefGoogle Scholar
  28. 28.
    Zhang, X., Qin, J., Wang, W., Sun, Y., Lu, J.: Hmsearch: an efficient hamming distance query processing algorithm. In: Proc. SSDBM, pp. 1–12 (2013)Google Scholar
  29. 29.
    Zhou, W., Lu, Y., Li, H., Tian, Q.: Scalar quantization for large scale image search. ACM Multimedia, 169–178 (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Johannes Niedermayer
    • 1
  • Peer Kröger
    • 1
  1. 1.Ludwig-Maximilians-University MunichGermany

Personalised recommendations