Small Time Asymptotics for an Example of Strictly Hypoelliptic Heat Kernel

  • Jacques FranchiEmail author
Part of the Lecture Notes in Mathematics book series (LNM, volume 2123)


A small time asymptotics of the density is established for a simplified (non-Gaussian, strictly hypoelliptic) second chaos process tangent to the Dudley relativistic diffusion.


  1. 1.
    R. Azencott, Densité des Diffusions en temps petit: Développements Asymptotiques. Sém. Proba. XVIII, Lecture Notes, vol. 1059 (Springer, New York, 1984), pp. 402–498Google Scholar
  2. 2.
    G. Ben Arous, Développement asymptotique du noyau de la chaleur hypoelliptique hors du cut-locus. Ann. sci. É.N.S. Sér. 4, 21(3), 307–331 (1988)Google Scholar
  3. 3.
    G. Ben Arous, Développement asymptotique du noyau de la chaleur hypoelliptique sur la diagonale. Ann. Inst. Fourier 39(1), 73–99 (1989)CrossRefMathSciNetzbMATHGoogle Scholar
  4. 4.
    I. Bailleul, J. Franchi, Non-explosion criteria for relativistic diffusions. Ann. Probab. 40(5), 2168–2196 (2012)CrossRefMathSciNetzbMATHGoogle Scholar
  5. 5.
    P. Biane, J. Pitman, M. Yor, Probability laws related to the Jacobi theta and Riemann zeta functions, and Brownian excursions. Bull. A.M.S. 38(4), 435–465 (2001)Google Scholar
  6. 6.
    F. Castell, Asymptotic expansion of stochastic flows. Probab. Theor. Relat. Field 96, 225–239 (1993)CrossRefMathSciNetzbMATHGoogle Scholar
  7. 7.
    E.T. Copson, Asymptotic Expansions (Cambridge University Press, Cambridge, 1965)CrossRefzbMATHGoogle Scholar
  8. 8.
    T. Chan, D.S. Dean, K.M. Jansons, L.C.G. Rogers, On polymer conformations in elongational flows. Commun. Math. Phys. 160, 239–257 (1994)CrossRefMathSciNetzbMATHGoogle Scholar
  9. 9.
    F. Delarue, S. Menozzi, Density estimates for a random noise propagating through a chain of differential equations. J. Funct. Anal. 259, 1577–1630 (2010)CrossRefMathSciNetzbMATHGoogle Scholar
  10. 10.
    R.M. Dudley, Lorentz-invariant Markov processes in relativistic phase space. Arkiv för Matematik 6(14), 241–268 (1965)MathSciNetGoogle Scholar
  11. 11.
    A.F.M. ter Elst, D.W. Robinson, A. Sikora, Small time asymptotics of diffusion processes. J. Evol. Equ. 7(1), 79–112 (2007)CrossRefMathSciNetzbMATHGoogle Scholar
  12. 12.
    J. Franchi, Y. Le Jan, Relativistic diffusions and schwarzschild geometry. Commun. Pure Appl. Math. LX(2), 187–251 (2007)Google Scholar
  13. 13.
    J. Franchi, Y. Le Jan, Curvature diffusions in general relativity. Commun. Math. Phys. 307(2), 351–382 (2011)CrossRefzbMATHGoogle Scholar
  14. 14.
    J. Franchi, Y. Le Jan, Hyperbolic Dynamics and Brownian Motion. Oxford Mathematical Monographs (Oxford Science, Oxford, 2012)CrossRefzbMATHGoogle Scholar
  15. 15.
    R. Léandre, Intégration dans la fibre associée à une diffusion dégénérée. Probab. Theor. Relat. Field 76(3), 341–358 (1987)CrossRefzbMATHGoogle Scholar
  16. 16.
    A. Nagel, E.M. Stein, S. Wainger, Balls and metrics defined by vector fields I : Basic properties. Acta Math. 155, 103–147 (1985)Google Scholar
  17. 17.
    C. Tardif, A Poincaré cone condition in the Poincaré group. Pot. Anal. 38(3), 1001–1030 (2013)CrossRefMathSciNetzbMATHGoogle Scholar
  18. 18.
    S.R.S. Varadhan, Diffusion processes in a small time interval. Commun. Pure Appl. Math. 20, 659–685 (1967)CrossRefMathSciNetzbMATHGoogle Scholar
  19. 19.
    M. Yor, Some Aspects of Brownian Motion. Part I. Some Special Functionals. Lectures in Mathematics, E.T.H. Zürich (Birkhäuser Verlag, Basel, 1992)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.IRMAUniversité de StrasbourgStrasbourgFrance

Personalised recommendations