Séminaire de Probabilités XLVI pp 461-472

Part of the Lecture Notes in Mathematics book series (LNM, volume 2123) | Cite as

Invariance Principle for the Random Walk Conditioned to Have Few Zeros

Chapter

Abstract

We consider a nearest neighbor random walk on \(\mathbb{Z}\) starting at zero, conditioned to return at zero at time 2n and to have a number zn of zeros on (0, 2n]. As \(n \rightarrow +\infty \), if \(z_{n} = o(\sqrt{n})\), we show that the rescaled random walk converges toward the Brownian excursion normalized to have unit duration. This generalizes the classical result for the case zn ≡ 1.

Keywords

Conditioned random walk Excursions Invariance principle 

References

  1. 1.
    P. Billingsley, Convergence of Probability Measures (Wiley, New York, 1968)MATHGoogle Scholar
  2. 2.
    F. Caravenna, L. Chaumont, An invariance principle for random walk bridges conditioned to stay positive. Electron. J. Probab. 18(60), 1–32 (2013)MathSciNetGoogle Scholar
  3. 3.
    E. Csaki, Y. Hu, Lengths and heights of random walk excursions. Discrete Math. Theor. Comput. Sci. AC, 45–52 (2003)Google Scholar
  4. 4.
    G. Giacomin, Random Polymer Models (Imperial College Press, World Scientific, 2007)CrossRefMATHGoogle Scholar
  5. 5.
    W.D. Kaigh, An invariance principle for random walk conditioned by a late return to zero. Ann. Probab. 4, 115–121 (1976)CrossRefMathSciNetMATHGoogle Scholar
  6. 6.
    J.F. Le Gall, Random trees and applications. Probab. Surv. 2, 245–311 (2005)CrossRefMathSciNetMATHGoogle Scholar
  7. 7.
    T. Liggett, An invariance principle for conditioned sums of independent random variables. J. Math. Mech. 18, 559–570 (1968)MathSciNetMATHGoogle Scholar
  8. 8.
    P. Révész, Local times and invariance. Analytic Methods in Probab. Theory. LNM 861 (Springer, New York, 1981), pp. 128–145Google Scholar
  9. 9.
    P. Révész, Random Walk in Random and Non-random Environments, 2nd edn. (World Scientific, Singapore, 2005)CrossRefMATHGoogle Scholar
  10. 10.
    D. Revuz, M. Yor, Continuous Martingales and Brownian Motion, 3rd edn. (Springer, New York, 1999)CrossRefMATHGoogle Scholar
  11. 11.
    R.P. Stanley, Enumerative Combinatorics, vol. 2 (Cambridge University Press, Cambridge, 1999)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Laboratoire de Mathématiques (CNRS umr 6620)Clermont Université, Université Blaise PascalAubièreFrance

Personalised recommendations