How Semantic Technologies Can Enhance Data Access at Siemens Energy

  • Evgeny Kharlamov
  • Nina Solomakhina
  • Özgür Lütfü Özçep
  • Dmitriy Zheleznyakov
  • Thomas Hubauer
  • Steffen Lamparter
  • Mikhail Roshchin
  • Ahmet Soylu
  • Stuart Watson
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8796)


We present a description and analysis of the data access challenge in the Siemens Energy. We advocate for Ontology Based Data Access (OBDA) as a suitable Semantic Web driven technology to address the challenge. We derive requirements for applying OBDA in Siemens, review existing OBDA systems and discuss their limitations with respect to the Siemens requirements. We then introduce the Optique platform as a suitable OBDA solution for Siemens. Finally, we describe our preliminary installation and evaluation of the platform in Siemens.


Streaming Data SPARQL Query Query Pattern Continuous Query Query Formulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Doan, A., Halevy, A.Y., Ives, Z.G.: Principles of Data Integration. Morgan Kaufmann (2012)Google Scholar
  2. 2.
    Kogalovsky, M.R.: Ontology-Based Data Access Systems. Programming and Computer Software 38(4) (2012)Google Scholar
  3. 3.
    Horrocks, I.: What are ontologies good for? In: Evolution of Semantic Systems, pp. 175–188. Springer (2013)Google Scholar
  4. 4.
    Giese, M., Calvanese, D., Horrocks, I., Ioannidis, Y., Klappi, H., Koubarakis, M., Lenzerini, M., Moller, R., Ozcep, O., Rodriguez Muro, M., Rosati, R., Schlatte, R., Soylu, A., Waaler, A.: Scalable end-user access to big data. In: Big Data Computing, Chapman and Hall/CRC (2013)Google Scholar
  5. 5.
    Kharlamov, E., et al.: Optique: Towards OBDA Systems for Industry. In: Cimiano, P., Fernández, M., Lopez, V., Schlobach, S., Völker, J. (eds.) ESWC 2013. LNCS, vol. 7955, pp. 125–140. Springer, Heidelberg (2013)Google Scholar
  6. 6.
    Calvanese, D., et al.: Optique: OBDA solution for big data. In: Cimiano, P., Fernández, M., Lopez, V., Schlobach, S., Völker, J. (eds.) ESWC 2013. LNCS, vol. 7955, pp. 293–295. Springer, Heidelberg (2013)Google Scholar
  7. 7.
    Poggi, A., Lembo, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Rosati, R.: Linking Data to Ontologies. J. Data Semantics 10, 133–173 (2008)Google Scholar
  8. 8.
    Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning and efficient query answering in Description Logics: The DL-Lite family. J. of Automated Reasoning 39(3), 385–429 (2007)CrossRefzbMATHGoogle Scholar
  9. 9.
    Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Poggi, A., Rodriguez-Muro, M., Rosati, R., Ruzzi, M., Savo, D.F.: The mastro system for ontology-based data access. Semantic Web 2(1), 43–53 (2011)Google Scholar
  10. 10.
    Priyatna, F., Corcho, O., Sequeda, J.: Formalisation and Experiences of R2RML-based SPARQL to SQL Query Translation Using Morph. In: WWW (2014)Google Scholar
  11. 11.
    Rodriguez-Muro, M., Kontchakov, R., Zakharyaschev, M.: Obda with ontop. In: ORE, pp. 101–106 (2013)Google Scholar
  12. 12.
    Bizer, C., Seaborne, A.: D2RQ-Treating non-RDF Databases as Virtual RDF Graphs. In: ISWC (2004)Google Scholar
  13. 13.
    Munir, K., Odeh, M., McClatchey, R.: Ontology-driven relational query formulation using the semantic and assertional capabilities of owl-dl. Knowl.-Based Syst. 35, 144–159 (2012)CrossRefGoogle Scholar
  14. 14.
    Sequeda, J.F., Miranker, D.P.: Ultrawrap: SPARQL execution on relational data. J. of Web Sem. 22 (2013)Google Scholar
  15. 15.
    Tian, A., Sequeda, J.F., Miranker, D.P.: QODI: Query as Context in Automatic Data Integration. In: Alani, H., et al. (eds.) ISWC 2013, Part I. LNCS, vol. 8218, pp. 624–639. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  16. 16.
    Skjæveland, M.G., Lian, E.H., Horrocks, I.: Publishing the Norwegian Petroleum Directorate’s FactPages as Semantic Web Data. In: Alani, H., et al. (eds.) ISWC 2013, Part II. LNCS, vol. 8219, pp. 162–177. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  17. 17.
    Kharlamov, E., Giese, M., Jiménez-Ruiz, E., Skjæveland, M.G., Soylu, A., Zheleznyakov, D., Bagosi, T., Console, M., Haase, P., Horrocks, I., Marciuska, S., Pinkel, C., Rodriguez-Muro, M., Ruzzi, M., Santarelli, V., Savo, D.F., Sengupta, K., Schmidt, M., Thorstensen, E., Trame, J., Waaler, A.: Optique 1.0: Semantic Access to Big Data: The Case of Norwegian Petroleum Directorate’s FactPages. In: ISWC (Posters & Demos) (2013)Google Scholar
  18. 18.
    Haase, P., Horrocks, I., Hovland, D., Hubauer, T., Jiménez-Ruiz, E., Kharlamov, E., Klüwer, J.W., Pinkel, C., Rosati, R., Santarelli, V., Soylu, A., Zheleznyakov, D.: Optique system: towards ontology and mapping management in obda solutions. In: WoDOOM, pp. 21–32 (2013)Google Scholar
  19. 19.
    Glimm, B., Horrocks, I., Motik, B., Stoilos, G.: Optimising Ontology Classification. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part I. LNCS, vol. 6496, pp. 225–240. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  20. 20.
    Calvanese, D., Horrocks, I., Jiménez-Ruiz, E., Kharlamov, E., Meier, M., Rodriguez-Muro, M., Zheleznyakov, D.: On rewriting, answering queries in obda systems for big data. In: OWLED (2013)Google Scholar
  21. 21.
    Kllapi, H., Bilidas, D., Horrocks, I., Ioannidis, Y.E., Jiménez-Ruiz, E., Kharlamov, E., Koubarakis, M., Zheleznyakov, D.: Distributed query processing on the cloud: the optique point of view. In: OWLED (2013)Google Scholar
  22. 22.
    Horrocks, I., Hubauer, T., Jiménez-Ruiz, E., Kharlamov, E., Koubarakis, M., Möller, R., Bereta, K., Neuenstadt, C., Özçep, Ö.L., Roshchin, M., Smeros, P., Zheleznyakov, D.: Addressing streaming and historical data in obda systems: Optique’s approach. In: KNOW@LOD, pp. 33–40 (2013)Google Scholar
  23. 23.
    Tsangaris, M.M., Kakaletris, G., Kllapi, H., Papanikos, G., Pentaris, F., Polydoras, P., Sitaridi, E., Stoumpos, V., Ioannidis, Y.E.: Dataflow processing and optimization on grid and cloud infrastructures. IEEE Data Eng. Bull. 32(1), 67–74 (2009)Google Scholar
  24. 24.
    Haase, P., Hütter, C., Schmidt, M., Schwarte, A.: The Information Workbench as a Self-Service Platform for Linked Data Applications. In: WWW (2012)Google Scholar
  25. 25.
    Soylu, A., Giese, M., Jimenez-Ruiz, E., Kharlamov, E., Zheleznyakov, D., Horrocks, I.: OptiqueVQS – Towards an Ontology-Based Visual Query System for Big Data. In: MEDES (2013)Google Scholar
  26. 26.
    Soylu, A., Skjæveland, M.G., Giese, M., Horrocks, I., Jimenez-Ruiz, E., Kharlamov, E., Zheleznyakov, D.: A preliminary approach on ontology-based visual query formulation for big data. In: Garoufallou, E., Greenberg, J. (eds.) MTSR 2013. Communications in Computer and Information Science, vol. 390, pp. 201–212. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  27. 27.
    Waltinger, U., Tecuci, D., Olteanu, M., Mocanu, V., Sullivan, S.: Natural language access to enterprise data. AI Magazine 35(1), 38–52 (2014)Google Scholar
  28. 28.
    Artale, A., Kontchakov, R., Wolter, F., Zakharyaschev, M.: Temporal description logic for ontology-based data access. In: IJCAI 2013, pp. 711–717 (2013)Google Scholar
  29. 29.
    Borgwardt, S., Lippmann, M., Thost, V.: Temporal query answering in the description logic DL-lite. In: Fontaine, P., Ringeissen, C., Schmidt, R.A. (eds.) FroCoS 2013. LNCS, vol. 8152, pp. 165–180. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  30. 30.
    Barbieri, D.F., Braga, D., Ceri, S., Valle, E.D., Grossniklaus, M.: C-sparql: a continuous query language for rdf data streams. Int. J. Semantic Computing 4(1), 3–25 (2010)CrossRefzbMATHGoogle Scholar
  31. 31.
    Calbimonte, J.P., Corcho, O., Gray, A.J.G.: Enabling Ontology-Based Access to Streaming Data Sources. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part I. LNCS, vol. 6496, pp. 96–111. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  32. 32.
    Le-Phuoc, D., Dao-Tran, M., Xavier Parreira, J., Hauswirth, M.: A native and adaptive approach for unified processing of linked streams and linked data. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011, Part I. LNCS, vol. 7031, pp. 370–388. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  33. 33.
    Zhang, Y., Duc, P.M., Corcho, O., Calbimonte, J.-P.: SRBench: A Streaming RDF/SPARQL Benchmark. In: Cudré-Mauroux, P., et al. (eds.) ISWC 2012, Part I. LNCS, vol. 7649, pp. 641–657. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  34. 34.
    Özçep, Ö.L., Möller, R., Neuenstadt, C., Zheleznyakov, D., Kharlamov, E.: Deliverable D5.1 – a semantics for temporal and stream-based query answering in an OBDA context. In: Deliverable FP7-318338, EU (2013)Google Scholar
  35. 35.
    Özçep, Ö.L., Möller, R., Neuenstadt, C.: Obda stream access combined with safe first-order temporal reasoning. Technical report, Hamburg University of Technology (2014)Google Scholar
  36. 36.
    Arasu, A., Babu, S., Widom, J.: The CQL Continuous Query Language: Semantic Foundations and Query Execution. The VLDB Journal 15(2), 121–142 (2006), doi:10.1007/s00778-004-0147-zCrossRefGoogle Scholar
  37. 37.
    Compton, M., Barnaghi, P.M., Bermudez, L., Garcia-Castro, R., Corcho, Ó., Cox, S., Graybeal, J., Hauswirth, M., Henson, C.A., Herzog, A., Huang, V.A., Janowicz, K., Kelsey, W.D., Phuoc, D.L., Lefort, L., Leggieri, M., Neuhaus, H., Nikolov, A., Page, K.R., Passant, A., Sheth, A.P., Taylor, K.: The SSN Ontology of the W3C Semantic Sensor Network Incubator Group. J. Web Sem. 17, 25–32 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Evgeny Kharlamov
    • 1
  • Nina Solomakhina
    • 2
  • Özgür Lütfü Özçep
    • 3
  • Dmitriy Zheleznyakov
    • 1
  • Thomas Hubauer
    • 2
  • Steffen Lamparter
    • 2
  • Mikhail Roshchin
    • 2
  • Ahmet Soylu
    • 4
  • Stuart Watson
    • 5
  1. 1.University of OxfordUK
  2. 2.Siemens Corporate TechnologyGermany
  3. 3.Hamburg University of TechnologyGermany
  4. 4.University of OsloNorway
  5. 5.Siemens EnergyUK

Personalised recommendations