Answering SPARQL Queries over Databases under OWL 2 QL Entailment Regime

  • Roman Kontchakov
  • Martin Rezk
  • Mariano Rodríguez-Muro
  • Guohui Xiao
  • Michael Zakharyaschev
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8796)

Abstract

We present an extension of the ontology-based data access platform Ontop that supports answering SPARQL queries under the OWL 2 QL direct semantics entailment regime for data instances stored in relational databases. On the theoretical side, we show how any input SPARQL query, OWL 2 QL ontology and R2RML mappings can be rewritten to an equivalent SQL query solely over the data. On the practical side, we present initial experimental results demonstrating that by applying the Ontop technologies—the tree-witness query rewriting, \(\mathcal{T}\)-mappings compiling R2RML mappings with ontology hierarchies, and \(\mathcal{T}\)-mapping optimisations using SQL expressivity and database integrity constraints—the system produces scalable SQL queries.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley (1995)Google Scholar
  2. 2.
    Angles, R., Gutierrez, C.: The expressive power of SPARQL. In: Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 114–129. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Bornea, M., Dolby, J., Kementsietsidis, A., Srinivas, K., Dantressangle, P., Udrea, O., Bhattacharjee, B.: Building an efficient RDF store over a relational database. In: Proc. of SIGMOD 2013, pp. 121–132. ACM (2013)Google Scholar
  4. 4.
    Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Poggi, A., Rodriguez-Muro, M., Rosati, R., Ruzzi, M., Savo, D.F.: The MASTRO system for ontology-based data access. Semantic Web 2(1), 43–53 (2011)Google Scholar
  5. 5.
    Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning and efficient query answering in description logics: The DL-Lite family. J. of Automated Reasoning 39(3), 385–429 (2007)Google Scholar
  6. 6.
    Chakravarthy, U.S., Grant, J., Minker, J.: Logic-based approach to semantic query optimization. ACM Transactions on Database Systems 15(2), 162–207 (1990)CrossRefGoogle Scholar
  7. 7.
    Chebotko, A., Lu, S., Fotouhi, F.: Semantics preserving SPARQL-to-SQL translation. Data Knowl. Eng. 68(10), 973–1000 (2009)CrossRefGoogle Scholar
  8. 8.
    Chortaras, A., Trivela, D., Stamou, G.: Optimized query rewriting for OWL 2 QL. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS, vol. 6803, pp. 192–206. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. 9.
    Cyganiak, R.: A relational algebra for SPARQL. Tech. Rep. HPL-2005-170, HP Labs (2005)Google Scholar
  10. 10.
    Das, S., Sundara, S., Cyganiak, R.: R2RML: RDB to RDF Mapping Language (September 2012), http://www.w3.org/TR/r2rml
  11. 11.
    Dolby, J., Fokoue, A., Kalyanpur, A., Ma, L., Schonberg, E., Srinivas, K., Sun, X.: Scalable grounded conjunctive query evaluation over large and expressive knowledge bases. In: Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 403–418. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Eiter, T., Ortiz, M., Šimkus, M., Tran, T.K., Xiao, G.: Query rewriting for Horn-SHIQ plus rules. In: Proc. of AAAI. AAAI Press (2012)Google Scholar
  13. 13.
    Elliott, B., Cheng, E., Thomas-Ogbuji, C., Özsoyoglu, Z.M.: A complete translation from SPARQL into efficient SQL. In: Proc. of IDEAS, pp. 31–42. ACM (2009)Google Scholar
  14. 14.
    Glimm, B., Horrocks, I., Motik, B., Stoilos, G.: Optimising ontology classification. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part I. LNCS, vol. 6496, pp. 225–240. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  15. 15.
    Gottlob, G., Orsi, G., Pieris, A.: Ontological queries: Rewriting and optimization. In: Proc. of ICDE, pp. 2–13. IEEE Computer Society (2011)Google Scholar
  16. 16.
    Guo, Y., Pan, Z., Heflin, J.: LUBM: A benchmark for OWL knowledge base systems. J. of Web Semantics 3(2-3), 158–182 (2005)CrossRefGoogle Scholar
  17. 17.
    Heymans, S., et al.: Ontology reasoning with large data repositories. In: Ontology Management, Semantic Web, Semantic Web Services, and Business Applications. Springer (2008)Google Scholar
  18. 18.
    King, J.J.: Query Optimization by Semantic Reasoning. Ph.D. thesis, Stanford, USA (1981)Google Scholar
  19. 19.
    Kollia, I., Glimm, B.: Optimizing SPARQL query answering over OWL ontologies. J. of Artificial Intelligence Research 48, 253–303 (2013)MathSciNetMATHGoogle Scholar
  20. 20.
    König, M., Leclère, M., Mugnier, M.-L., Thomazo, M.: On the exploration of the query rewriting space with existential rules. In: Faber, W., Lembo, D. (eds.) RR 2013. LNCS, vol. 7994, pp. 123–137. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  21. 21.
    Kontchakov, R., Rodríguez-Muro, M., Zakharyaschev, M.: Ontology-based data access with databases: A short course. In: Rudolph, S., Gottlob, G., Horrocks, I., van Harmelen, F. (eds.) Reasoning Weg 2013. LNCS, vol. 8067, pp. 194–229. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  22. 22.
    Lutz, C., Seylan, İ., Toman, D., Wolter, F.: The combined approach to OBDA: Taming role hierarchies using filters. In: Alani, H., et al. (eds.) ISWC 2013, Part I. LNCS, vol. 8218, pp. 314–330. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  23. 23.
    Pérez-Urbina, H., Rodríguez-Díaz, E., Grove, M., Konstantinidis, G., Sirin, E.: Evaluation of query rewriting approaches for OWL 2. In: SSWS+HPCSW. CEUR-WS, vol. 943 (2012)Google Scholar
  24. 24.
    Poggi, A., Lembo, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Rosati, R.: Linking data to ontologies. J. on Data Semantics X, 133–173 (2008)Google Scholar
  25. 25.
    Polleres, A.: From SPARQL to rules (and back). In: Proc. WWW, pp. 787–796. ACM (2007)Google Scholar
  26. 26.
    Polleres, A., Wallner, J.P.: On the relation between SPARQL 1.1 and Answer Set Programming. J. of Applied Non-Classical Logics 23(1-2), 159–212 (2013)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Priyatna, F., Corcho, O., Sequeda, J.: Formalisation and experiences of R2RML-based SPARQL to SQL query translation using Morph. In: Proc. of WWW, pp. 479–490 (2014)Google Scholar
  28. 28.
    Rodríguez-Muro, M., Hardi, J., Calvanese, D.: Quest: Efficient SPARQL-to-SQL for RDF and OWL. In: Proc. of the ISWC 2012 P&D Track, vol. 914. CEUR-WS.org (2012)Google Scholar
  29. 29.
    Rodríguez-Muro, M., Kontchakov, R., Zakharyaschev, M.: Ontology-based data access: Ontop of databases. In: Alani, H., et al. (eds.) ISWC 2013, Part I. LNCS, vol. 8218, pp. 558–573. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  30. 30.
    Sequeda, J.F., Miranker, D.P.: Ultrawrap: SPARQL execution on relational data. J. of Web Semantics 22, 19–39 (2013)CrossRefGoogle Scholar
  31. 31.
    Sirin, E., Parsia, B., Cuenca Grau, B., Kalyanpur, A., Katz, Y.: Pellet: A practical OWL-DL Reasoner. J. of Web Semantics 5(2), 51–53 (2007)CrossRefGoogle Scholar
  32. 32.
    Zemke, F.: Converting SPARQL to SQL. Tech. rep., Oracle Corp. (2006)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Roman Kontchakov
    • 1
  • Martin Rezk
    • 2
  • Mariano Rodríguez-Muro
    • 3
  • Guohui Xiao
    • 2
  • Michael Zakharyaschev
    • 1
  1. 1.Department of Computer Science and Information SystemsBirkbeck, University of LondonU.K.
  2. 2.Faculty of Computer ScienceFree University of Bozen-BolzanoItaly
  3. 3.IBM T.J. Watson Research CenterYorktown HeightsUSA

Personalised recommendations