Ensemble Learning for Named Entity Recognition

  • René Speck
  • Axel-Cyrille Ngonga Ngomo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8796)

Abstract

A considerable portion of the information on the Web is still only available in unstructured form. Implementing the vision of the Semantic Web thus requires transforming this unstructured data into structured data. One key step during this process is the recognition of named entities. Previous works suggest that ensemble learning can be used to improve the performance of named entity recognition tools. However, no comparison of the performance of existing supervised machine learning approaches on this task has been presented so far. We address this research gap by presenting a thorough evaluation of named entity recognition based on ensemble learning. To this end, we combine four different state-of-the approaches by using 15 different algorithms for ensemble learning and evaluate their performace on five different datasets. Our results suggest that ensemble learning can reduce the error rate of state-of-the-art named entity recognition systems by 40%, thereby leading to over 95% f-score in our best run.

Keywords

Named Entity Recognition Ensemble Learning Semantic Web 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allwein, E.L., Schapire, R.E., Singer, Y.: Reducing multiclass to binary: A unifying approach for margin classifiers. J. Mach. Learn. Res. 1, 113–141 (2001)MathSciNetMATHGoogle Scholar
  2. 2.
    Amsler, R.: Research towards the development of a lexical knowledge base for natural language processing. SIGIR Forum 23, 1–2 (1989)CrossRefGoogle Scholar
  3. 3.
    Baldridge, J.: The opennlp project (2005)Google Scholar
  4. 4.
    Bay, S.D., Hettich, S.: The UCI KDD Archive (1999), http://kdd.ics.uci.edu
  5. 5.
    Breiman, L.: Bagging predictors. Machine Learning 24(2), 123–140 (1996)MathSciNetMATHGoogle Scholar
  6. 6.
    Breiman, L.: Random forests. Machine Learning 45(1), 5–32 (2001)CrossRefMATHGoogle Scholar
  7. 7.
    Chang, C.-C., Lin, C.-J.: LIBSVM - a library for support vector machines. The Weka classifier works with version 2.82 of LIBSVM (2001)Google Scholar
  8. 8.
    Coates-Stephens, S.: The analysis and acquisition of proper names for the understanding of free text. Computers and the Humanities 26, 441–456 (1992), doi:10.1007/BF00136985CrossRefGoogle Scholar
  9. 9.
    Cornolti, M., Ferragina, P., Ciaramita, M.: A framework for benchmarking entity-annotation systems. In: Proceedings of the 22nd International Conference on World Wide Web, pp. 249–260. International World Wide Web Conferences Steering Committee (2013)Google Scholar
  10. 10.
    Curran, J.R., Clark, S.: Language independent ner using a maximum entropy tagger. In: Proceedings of the Seventh Conference on Natural Language Learning at HLT-NAACL 2003, vol. 4, pp. 164–167 (2003)Google Scholar
  11. 11.
    Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006)MathSciNetMATHGoogle Scholar
  12. 12.
    Dietterich, T.G.: Ensemble methods in machine learning. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, pp. 1–15. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  13. 13.
    Etzioni, O., Cafarella, M., Downey, D., Popescu, A.-M., Shaked, T., Soderland, S., Weld, D.S., Yates, A.: Unsupervised named-entity extraction from the web: an experimental study. Artif. Intell. 165, 91–134 (2005)CrossRefGoogle Scholar
  14. 14.
    Finkel, J.R., Grenager, T., Manning, C.: Incorporating non-local information into information extraction systems by gibbs sampling. In: ACL, pp. 363–370 (2005)Google Scholar
  15. 15.
    Freire, N., Borbinha, J., Calado, P.: An approach for named entity recognition in poorly structured data. In: Simperl, E., Cimiano, P., Polleres, A., Corcho, O., Presutti, V. (eds.) ESWC 2012. LNCS, vol. 7295, pp. 718–732. Springer, Heidelberg (2012)Google Scholar
  16. 16.
    Freund, Y., Schapire, R.E.: Experiments with a New Boosting Algorithm. In: International Conference on Machine Learning, pp. 148–156 (1996)Google Scholar
  17. 17.
    Friedman, J., Hastie, T., Tibshirani, R.: Additive logistic regression: a statistical view of boosting. Technical report, Stanford University (1998)Google Scholar
  18. 18.
    Gama, J.: Functional trees 55(3), 219–250 (2004)Google Scholar
  19. 19.
    Gangemi, A.: A comparison of knowledge extraction tools for the semantic web. In: Cimiano, P., Corcho, O., Presutti, V., Hollink, L., Rudolph, S. (eds.) ESWC 2013. LNCS, vol. 7882, pp. 351–366. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  20. 20.
    Hakimov, S., Oto, S.A., Dogdu, E.: Named entity recognition and disambiguation using linked data and graph-based centrality scoring. In: Proceedings of the 4th International Workshop on Semantic Web Information Management, SWIM 2012, pp. 4:1–4:7. ACM, New York (2012)Google Scholar
  21. 21.
    Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The weka data mining software: An update. SIGKDD Explor. Newsl. 11(1), 10–18 (2009)CrossRefGoogle Scholar
  22. 22.
    Hastie, T., Tibshirani, R.: Classification by pairwise coupling. In: Jordan, M.I., Kearns, M.J., Solla, S.A. (eds.) Advances in Neural Information Processing Systems, vol. 10. MIT Press (1998)Google Scholar
  23. 23.
    John, G.H., Langley, P.: Estimating continuous distributions in bayesian classifiers. In: Eleventh Conference on Uncertainty in Artificial Intelligence, pp. 338–345. Morgan Kaufmann, San Mateo (1995)Google Scholar
  24. 24.
    Khalili, A., Auer, S.: Rdface: The rdfa content editor. In: ISWC 2011 Demo Track (2011)Google Scholar
  25. 25.
    Kittler, J., Hatef, M., Duin, R.W., Matas, J.: On combining classifiers. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(3), 226–239 (1998)CrossRefGoogle Scholar
  26. 26.
    Kohavi, R.: The power of decision tables. In: Lavrač, N., Wrobel, S. (eds.) ECML 1995. LNCS, vol. 912, pp. 174–189. Springer, Heidelberg (1995)Google Scholar
  27. 27.
    Landwehr, N., Hall, M., Frank, E.: Logistic model trees. Machine Learning 95(1-2), 161–205 (2005)CrossRefGoogle Scholar
  28. 28.
    le Cessie, S., van Houwelingen, J.C.: Ridge estimators in logistic regression. Applied Statistics 41(1), 191–201 (1992)CrossRefMATHGoogle Scholar
  29. 29.
    Matthews, B.W.: Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochim. Biophys. Acta 405, 442–451 (1975)CrossRefGoogle Scholar
  30. 30.
    Nadeau, D.: Balie—baseline information extraction: Multilingual information extraction from text with machine learning and natural language techniques. Technical report, University of Ottawa (2005)Google Scholar
  31. 31.
    Nadeau, D.: Semi-supervised Named Entity Recognition: Learning to Recognize 100 Entity Types with Little Supervision. PhD thesis, Ottawa, Ont., Canada, Canada, AAINR49385 (2007)Google Scholar
  32. 32.
    Nadeau, D., Sekine, S.: A survey of named entity recognition and classification. Linguisticae Investigationes 30(1), 3–26 (2007)CrossRefGoogle Scholar
  33. 33.
    Nadeau, D., Turney, P., Matwin, S.: Unsupervised named-entity recognition: Generating gazetteers and resolving ambiguity, pp. 266–277 (2006)Google Scholar
  34. 34.
    Ngonga Ngomo, A.-C., Heino, N., Lyko, K., Speck, R., Kaltenböck, M.: SCMS – Semantifying Content Management Systems. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011, Part II. LNCS, vol. 7032, pp. 189–204. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  35. 35.
    Pasca, M., Lin, D., Bigham, J., Lifchits, A., Jain, A.: Organizing and searching the world wide web of facts - step one: the one-million fact extraction challenge. In: Proceedings of the 21st National Conference on Artificial Intelligence, vol. 2, pp. 1400–1405. AAAI Press (2006)Google Scholar
  36. 36.
    Ross Quinlan, J.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers Inc., San Francisco (1993)Google Scholar
  37. 37.
    Ratinov, L., Roth, D.: Design challenges and misconceptions in named entity recognition. In: Proceedings of the Thirteenth Conference on Computational Natural Language Learning, CoNLL 2009, pp. 147–155. Association for Computational Linguistics, Stroudsburg (2009)CrossRefGoogle Scholar
  38. 38.
    Röder, M., Usbeck, R., Hellmann, S., Gerber, D., Both, A.: N 3 - A Collection of Datasets for Named Entity Recognition and Disambiguation in the NLP Interchange Format. In: Proceedings of LREC 2014 (2014)Google Scholar
  39. 39.
    Sampson, G.: How fully does a machine-usable dictionary cover english text. Literary and Linguistic Computing 4(1) (1989)Google Scholar
  40. 40.
    Schapire, R.E.: The strength of weak learnability. Mach. Learn. 5, 197–227 (1990)Google Scholar
  41. 41.
    Sumner, M., Frank, E., Hall, M.: Speeding up logistic model tree induction. In: Jorge, A.M., Torgo, L., Brazdil, P.B., Camacho, R., Gama, J. (eds.) PKDD 2005. LNCS (LNAI), vol. 3721, pp. 675–683. Springer, Heidelberg (2005)Google Scholar
  42. 42.
    Thielen, C.: An approach to proper name tagging for german. In: Proceedings of the EACL 1995 SIGDAT Workshop (1995)Google Scholar
  43. 43.
    Walker, D., Amsler, R.: The use of machine-readable dictionaries in sublanguage analysis. In: Analysing Language in Restricted Domains (1986)Google Scholar
  44. 44.
    Wu, D., Ngai, G., Carpuat, M.: A stacked, voted, stacked model for named entity recognition. In: Proceedings of the Seventh Conference on Natural Language Learning at HLT-NAACL 2003, CONLL 2003, vol. 4, pp. 200–203. Association for Computational Linguistics, Stroudsburg (2003)CrossRefGoogle Scholar
  45. 45.
    Yang, P., Yang, Y.H., Zhou, B.B., Zomaya, A.Y.: A review of ensemble methods in bioinformatics. Current Bioinformatics 5(4), 296–308 (2010)CrossRefGoogle Scholar
  46. 46.
    Zhou, G., Su, J.: Named entity recognition using an hmm-based chunk tagger. In: Proceedings of ACL, pp. 473–480 (2002)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • René Speck
    • 1
  • Axel-Cyrille Ngonga Ngomo
    • 1
  1. 1.AKSW, Department of Computer ScienceUniversity of LeipzigGermany

Personalised recommendations