Detecting Errors in Numerical Linked Data Using Cross-Checked Outlier Detection

  • Daniel Fleischhacker
  • Heiko Paulheim
  • Volha Bryl
  • Johanna Völker
  • Christian Bizer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8796)


Outlier detection used for identifying wrong values in data is typically applied to single datasets to search them for values of unexpected behavior. In this work, we instead propose an approach which combines the outcomes of two independent outlier detection runs to get a more reliable result and to also prevent problems arising from natural outliers which are exceptional values in the dataset but nevertheless correct. Linked Data is especially suited for the application of such an idea, since it provides large amounts of data enriched with hierarchical information and also contains explicit links between instances. In a first step, we apply outlier detection methods to the property values extracted from a single repository, using a novel approach for splitting the data into relevant subsets. For the second step, we exploit owl:sameAs links for the instances to get additional property values and perform a second outlier detection on these values. Doing so allows us to confirm or reject the assessment of a wrong value. Experiments on the DBpedia and NELL datasets demonstrate the feasibility of our approach.


Linked Data Data Debugging Data Quality Outlier Detection 


  1. 1.
    Acosta, M., Zaveri, A., Simperl, E., Kontokostas, D., Auer, S., Lehmann, J.: Crowdsourcing linked data quality assessment. In: Alani, H., et al. (eds.) ISWC 2013, Part II. LNCS, vol. 8219, pp. 260–276. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  2. 2.
    Breunig, M.M., Kriegel, H.-P., Ng, R.T., Sander, J.: LOF: Identifying density-based local outliers. SIGMOD Rec (2000)Google Scholar
  3. 3.
    Bryl, V., Bizer, C.: Learning conflict resolution strategies for cross-language Wikipedia data fusion. In: Proc. of the WebQuality Workshop at WWW 2014 (2014)Google Scholar
  4. 4.
    Carlson, A., Betteridge, J., Kisiel, B., Settles, B., Hruschka Jr., E.R., Mitchell, T.M.: Toward an architecture for never-ending language learning. In: Proc. of the 24th AAAI Conference on Artificial Intelligence (2010)Google Scholar
  5. 5.
    Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: A survey. ACM Comput. Surv (2009)Google Scholar
  6. 6.
    Dong, X.L., Berti-Equille, L., Srivastava, D.: Truth discovery and copying detection in a dynamic world. Proc. VLDB Endow (2009)Google Scholar
  7. 7.
    Euzenat, J., Shvaiko, P.: Ontology Matching, 2nd edn., pp. 1–511. Springer (2013)Google Scholar
  8. 8.
    Kullback, S., Leibler, R.A.: On information and sufficiency. The Annals of Mathematical Statistics 22(1), 79–86 (1951)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Lehmann, J., Bühmann, L.: ORE - A tool for repairing and enriching knowledge bases. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part II. LNCS, vol. 6497, pp. 177–193. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Lehmann, J., Gerber, D., Morsey, M., Ngonga Ngomo, A.-C.: DeFacto - deep fact validation. In: Cudré-Mauroux, P., et al. (eds.) ISWC 2012, Part I. LNCS, vol. 7649, pp. 312–327. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  11. 11.
    Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P.N., Hellmann, S., Morsey, M., van Kleef, P., Auer, S., Bizer, C.: DBpedia - a large-scale, multilingual knowledge base extracted from Wikipedia. Semantic Web Journal (2014)Google Scholar
  12. 12.
    Melo, A., Theobald, M., Völker, J.: Correlation-based refinement of rules with numerical attributes. In: Proc. of the 27th International Florida Artificial Intelligence Research Society Conference (2014)Google Scholar
  13. 13.
    de Melo, G.: Not quite the same: Identity constraints for the web of linked data. In: Proc. of the 27th AAAI Conference on Artificial Intelligence (2013)Google Scholar
  14. 14.
    Paulheim, H.: Identifying wrong links between datasets by multi-dimensional outlier detection. In: 3rd International Workshop on Debugging Ontologies and Ontology Mappings, WoDOOM (2014)Google Scholar
  15. 15.
    Paulheim, H., Bizer, C.: Type inference on noisy RDF data. In: Alani, H., et al. (eds.) ISWC 2013, Part I. LNCS, vol. 8218, pp. 510–525. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  16. 16.
    Töpper, G., Knuth, M., Sack, H.: DBpedia ontology enrichment for inconsistency detection. In: Proc. of the 8th International Conference on Semantic Systems (2012)Google Scholar
  17. 17.
    Waitelonis, J., Ludwig, N., Knuth, M., Sack, H.: Whoknows? evaluating linked data heuristics with a quiz that cleans up DBpedia. Interactive Technology and Smart Education (2011)Google Scholar
  18. 18.
    Wienand, D., Paulheim, H.: Detecting incorrect numerical data in dBpedia. In: Presutti, V., d’Amato, C., Gandon, F., d’Aquin, M., Staab, S., Tordai, A. (eds.) ESWC 2014. LNCS, vol. 8465, pp. 504–518. Springer, Heidelberg (2014)Google Scholar
  19. 19.
    Zimmermann, A., Gravier, C., Subercaze, J., Cruzille, Q.: Nell2RDF read the web, and turn it into RDF. In: Proc. of the 2nd International Workshop on Knowledge Discovery and Data Mining Meets Linked Open Data (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Daniel Fleischhacker
    • 1
  • Heiko Paulheim
    • 1
  • Volha Bryl
    • 1
  • Johanna Völker
    • 1
  • Christian Bizer
    • 1
  1. 1.Research Group Data and Web ScienceUniversity of MannheimGermany

Personalised recommendations