On Publishing Chinese Linked Open Schema

  • Haofen Wang
  • Tianxing Wu
  • Guilin Qi
  • Tong Ruan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8796)


Linking Open Data (LOD) is the largest community effort for semantic data publishing which converts the Web from a Web of document to a Web of interlinked knowledge. While the state of the art LOD contains billion of triples describing millions of entities, it has only a limited number of schema information and is lack of schema-level axioms. To close the gap between the lightweight LOD and the expressive ontologies, we contribute to the complementary part of the LOD, that is, Linking Open Schema (LOS). In this paper, we introduce Zhishi.schema, the first effort to publish Chinese linked open schema. We collect navigational categories as well as dynamic tags from more than 50 various most popular social Web sites in China. We then propose a two-stage method to capture equivalence, subsumption and relate relationships between the collected categories and tags, which results in an integrated concept taxonomy and a large semantic network. Experimental results show the high quality of Zhishi.schema. Compared with category systems of DBpedia, Yago, BabelNet, and Freebase, Zhishi.schema has wide coverage of categories and contains the largest number of subsumptions between categories. When substituting Zhishi.schema for the original category system of, we not only filter out incorrect category subsumptions but also add more finer-grained categories.


Linking Open Data Linking Open Schema Integrated Category Taxonomy Large Semantic Network 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baeza-Yates, R., Ribeiro-Neto, B., et al.: Modern information retrieval, vol. 463. ACM Press, New York (1999)Google Scholar
  2. 2.
    Berrueta, D., Phipps, J., Miles, A., Baker, T., Swick, R.: Best practice recipes for publishing rdf vocabularies. Working draft, W3C (2008)Google Scholar
  3. 3.
    Bizer, C., Heath, T., Berners-Lee, T.: Linked data-the story so far. International Journal on Semantic Web and Information Systems 5(3), 1–22 (2009)CrossRefGoogle Scholar
  4. 4.
    Bizer, C., Lehmann, J., Kobilarov, G., Auer, S., Becker, C., Cyganiak, R., Hellmann, S.: Dbpedia-a crystallization point for the web of data. Web Semantics: Science, Services and Agents on the World Wide Web 7(3), 154–165 (2009)CrossRefGoogle Scholar
  5. 5.
    Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collaboratively created graph database for structuring human knowledge. In: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, pp. 1247–1250. ACM (2008)Google Scholar
  6. 6.
    Brown, L.D., Cai, T.T., DasGupta, A.: Interval estimation for a binomial proportion. Statistical Science, 101–117 (2001)Google Scholar
  7. 7.
    Gabrilovich, E., Markovitch, S.: Computing semantic relatedness using wikipedia-based explicit semantic analysis. In: IJCAI, vol. 7, pp. 1606–1611 (2007)Google Scholar
  8. 8.
    Garcia-Silva, A., Corcho, O., Alani, H., Gomez-Perez, A.: Review of the state of the art: Discovering and associating semantics to tags in folksonomies. The Knowledge Engineering Review 27(01), 57–85 (2012)CrossRefGoogle Scholar
  9. 9.
    Hoffart, J., Suchanek, F.M., Berberich, K., Weikum, G.: Yago2: A spatially and temporally enhanced knowledge base from wikipedia. Artificial Intelligence 194, 28–61 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Navigli, R., Ponzetto, S.P.: Babelnet: Building a very large multilingual semantic network. In: Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics, pp. 216–225. Association for Computational Linguistics (2010)Google Scholar
  11. 11.
    Niu, X., Sun, X., Wang, H., Rong, S., Qi, G., Yu, Y.: - weaving chinese linking open data. In: International Semantic Web Conference, vol. (2), pp. 205–220 (2011)Google Scholar
  12. 12.
    Wu, W., Li, H., Wang, H., Zhu, K.Q.: Probase: A probabilistic taxonomy for text understanding. In: Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data, pp. 481–492. ACM (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Haofen Wang
    • 1
  • Tianxing Wu
    • 2
  • Guilin Qi
    • 2
  • Tong Ruan
    • 1
  1. 1.East China University of Science and TechnologyShanghaiChina
  2. 2.Southeast UniversityChina

Personalised recommendations