LOD Laundromat: A Uniform Way of Publishing Other People’s Dirty Data

  • Wouter Beek
  • Laurens Rietveld
  • Hamid R. Bazoobandi
  • Jan Wielemaker
  • Stefan Schlobach
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8796)

Abstract

It is widely accepted that proper data publishing is difficult. The majority of Linked Open Data (LOD) does not meet even a core set of data publishing guidelines. Moreover, datasets that are clean at creation, can get stains over time. As a result, the LOD cloud now contains a high level of dirty data that is difficult for humans to clean and for machines to process.

Existing solutions for cleaning data (standards, guidelines, tools) are targeted towards human data creators, who can (and do) choose not to use them. This paper presents the LOD Laundromat which removes stains from data without any human intervention. This fully automated approach is able to make very large amounts of LOD more easily available for further processing right now.

LOD Laundromat is not a new dataset, but rather a uniform point of entry to a collection of cleaned siblings of existing datasets. It provides researchers and application developers a wealth of data that is guaranteed to conform to a specified set of best practices, thereby greatly improving the chance of data actually being (re)used.

Keywords

Data Publishing Data Cleaning Data Reuse Standards Conformance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a Collaboratively Created Graph Database for Structuring Human Knowledge. In: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, pp. 1247–1250. ACM (2008)Google Scholar
  2. 2.
    Callahan, A., Cruz-Toledo, J., Ansell, P., Dumontier, M.: Bio2RDF Release 2: Improved Coverage, Interoperability and Provenance of Life Science Linked Data. In: Cimiano, P., Corcho, O., Presutti, V., Hollink, L., Rudolph, S. (eds.) ESWC 2013. LNCS, vol. 7882, pp. 200–212. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  3. 3.
    Ermilov, I., Martin, M., Lehmann, J., Auer, S.: Linked Open Data Statistics: Collection and Exploitation. In: Klinov, P., Mouromtsev, D. (eds.) KESW 2013. Communications in Computer and Information Science, vol. 394, pp. 242–249. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  4. 4.
    Hogan, A., Harth, A., Passant, A., Decker, S., Polleres, A.: Weaving the pedantic web. In: Linked Data on the Web Workshop (2010)Google Scholar
  5. 5.
    Hogan, A., Umbrich, J., Harth, A., Cyganiak, R., Polleres, A., Decker, S.: An Empirical Survey of Linked Data Conformance. Web Semantics: Science, Services and Agents on the World Wide Web 14, 14–44 (2012)CrossRefGoogle Scholar
  6. 6.
    Käfer, T., Abdelrahman, A., Umbrich, J., O’Byrne, P., Hogan, A.: Observing Linked Data Dynamics. In: Cimiano, P., Corcho, O., Presutti, V., Hollink, L., Rudolph, S. (eds.) ESWC 2013. LNCS, vol. 7882, pp. 213–227. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  7. 7.
    Olston, C., Reed, B., Srivastava, U., Kumar, R., Tomkins, A.: Pig latin: A not-so-foreign language for data processing. In: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, pp. 1099–1110. ACM (2008)Google Scholar
  8. 8.
    Oren, E., Delbru, R., Catasta, M., Cyganiak, R., Stenzhorn, H., Tummarello, G.: Sindice.com: a Document-Oriented Lookup Index for Open Linked Data. International Journal of Metadata, Semantics and Ontologies 3(1), 37–52 (2008)CrossRefGoogle Scholar
  9. 9.
    Stadtmüller, S., Harth, A., Grobelnik, M.: Accessing Information about Linked Data Vocabularies with vocab.cc. In: Semantic Web and Web Science, pp. 391–396. Springer (2013)Google Scholar
  10. 10.
    Tummarello, G., Cyganiak, R., Catasta, M., Danielczyk, S., Delbru, R., Decker, S.: Sigma: Live Views on the Web of Data. Web Semantics: Science, Services and Agents on the World Wide Web 8(4), 355–364 (2010)CrossRefGoogle Scholar
  11. 11.
    Wielemaker, J.: SWI-Prolog Semantic Web Library 3.0, http://prolog.cs.vu.nl/download/doc/semweb.pdf

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Wouter Beek
    • 1
  • Laurens Rietveld
    • 1
  • Hamid R. Bazoobandi
    • 1
  • Jan Wielemaker
    • 1
  • Stefan Schlobach
    • 1
  1. 1.Dept. of Computer ScienceVU University AmsterdamNL

Personalised recommendations