Advertisement

SCS Connector - Quantifying and Visualising Semantic Paths Between Entity Pairs

  • Bernardo Pereira Nunes
  • José Herrera
  • Davide Taibi
  • Giseli Rabello Lopes
  • Marco A. Casanova
  • Stefan Dietze
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8798)

Abstract

A key challenge of the Semantic Web lies in the creation of semantic links between Web resources. The creation of links serves as a mean to semantically enrich Web resources, connecting disparate information sources and facilitating data reuse and sharing. As the amount of data on the Web is ever increasing, automated methods to unveil links between Web resources are required. In this paper, we introduce a tool, called SCS Connector, that assists users to uncover links between entity pairs within and across datasets. SCS Connector provides a Web-based user interface and a RESTful API that enable users to interactively visualise and analyse paths between an entity pair \((e_i,e_j)\) through known links that can reveal meaningful relationships between \((e_i,e_j)\) according to a semantic connectivity score (\(SCS\)).

Keywords

Semantic connectivity score Graph visualisation Semantic associations Relationship discovery Semantic UI 

Notes

Acknowledgments

This work was partly supported by CNPq, under grants 160326/2012-5, 301497/2006-0, 475717/2011-2 and 57128/2009-9, by FAPERJ, under grants E-26/170028/2008 and E-26/103.070/2011.

References

  1. 1.
    Debnath, S., Ganguly, N., Mitra, P.: Feature weighting in content based recommendation system using social network analysis. In: Proceedings of the 17th international conference on World Wide Web, WWW ’08, pp. 1041–1042. ACM, New York, NY, USA (2008)Google Scholar
  2. 2.
    Graves, A., Adali, S., Hendler, J.: A method to rank nodes in an RDF graph. In: Proceedings of the 7th International Semantic Web Conference (Posters and Demos), Karlsruhe, Germany. CEUR Workshop, vol. 401, 28 October 2008. CEUR-WS.org
  3. 3.
    Han, Y.-J., Park, S.-B., Lee, S.-J., Park, S.Y., Kim, K.Y.: Ranking entities similar to an entity for a given relationship. In: Zhang, B.-T., Orgun, M.A. (eds.) PRICAI 2010. LNCS, vol. 6230, pp. 409–420. Springer, Heidelberg (2010)Google Scholar
  4. 4.
    Lehmann, J., Schüppel, J., Auer, S.: Discovering unknown connections - the DBpedia relationship finder. In: CSSW, pp. 99–110 (2007)Google Scholar
  5. 5.
    Nunes, B.P., Dietze, S., Casanova, M.A., Kawase, R., Fetahu, B., Nejdl, W.: Combining a co-occurrence-based and a semantic measure for entity linking. In: Cimiano, P., Corcho, O., Presutti, V., Hollink, L., Rudolph, S. (eds.) ESWC 2013. LNCS, vol. 7882, pp. 548–562. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  6. 6.
    Nunes, B.P., Kawase, R., Dietze, S., Taibi, D., Casanova, M.A., Nejdl, W.: Can Entities be Friends? In: Proceedings of the WOLE Workshop in Conjuction with the 11th ISWC. CEUR Workshop, vol. 906, pp. 45–57 (2012). CEUR-WS.org
  7. 7.
    Nunes, B.P., Kawase, R., Fetahu, B., Dietze, S., Casanova, M.A., Maynard, D.: Interlinking documents based on semantic graphs. Proc. Comput. Sci. 22(0), 231–240 (2013). In: Proceedings of the 17th International Conference in Knowledge Based and Intelligent Information and Engineering Systems - KES2013Google Scholar
  8. 8.
    Passant, A.: Dbrec — music recommendations using DBpedia. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part II. LNCS, vol. 6497, pp. 209–224. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Passant, A.: Measuring semantic distance on linking data and using it for resources recommendations. In: AAAI Spring Symposium: Linked Data Meets AI (2010)Google Scholar
  10. 10.
    Sabou, M., d’Aquin, M., Motta, E.: Exploring the semantic web as background knowledge for ontology matching. J. Data Semant. 11, 156–190 (2008)Google Scholar
  11. 11.
    Sabou, M., d’Aquin, M., Motta, E.: Relation discovery from the semantic web. In: Proceedings of the 7th ISWC (posters and demos). CEUR Workshop, vol. 401 (2008). CEUR-WS.org
  12. 12.
    Seo, D., Koo, H., Lee, S., Kim, P., Jung, H., Sung, W.-K.: Efficient finding relationship between individuals in a mass ontology database. In: FGIT-UNESST, pp. 281–286 (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Bernardo Pereira Nunes
    • 1
  • José Herrera
    • 1
  • Davide Taibi
    • 2
  • Giseli Rabello Lopes
    • 1
  • Marco A. Casanova
    • 1
  • Stefan Dietze
    • 3
  1. 1.Department of InformaticsPontifical Catholic University of Rio de JaneiroRio de JaneiroBrazil
  2. 2.Institute for Educational TechnologyItalian National Research CouncilPalermoItaly
  3. 3.L3S Research CenterLeibniz University HannoverHannoverGermany

Personalised recommendations