Publication of RDF Streams with Ztreamy

  • Jesús Arias Fisteus
  • Norberto Fernández García
  • Luis Sánchez Fernández
  • Damaris Fuentes-Lorenzo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8798)


There is currently an interest in the Semantic Web community for the development of tools and techniques to process RDF streams. Implementing an effective RDF stream processing system requires to address several aspects including stream generation, querying, reasoning, etc. In this work we focus on one of them: the distribution of RDF streams through the Web. In order to address this issue, we have developed Ztreamy, a scalable middleware which allows to publish and consume RDF streams through HTTP. The goal of this demo is to show the functionality of Ztreamy in two different scenarios with actual, heterogeneous streaming data.


Single Stream Stream Server Stream Query Social Network Post Stream Item 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work has been partially funded by the Spanish Government through the project HERMES-SMARTDRIVER (TIN2013-46801-C4-2-R).


  1. 1.
    Arias, J., Fernández, N., Sánchez, L., Fuentes-Lorenzo, D.: Ztreamy: a middleware for publishing semantic streams on the Web. Web Semant. Sci. Serv. Agents World Wide Web 25, 16–23 (2014). doi: 10.1016/j.websem.2013.11.002 CrossRefGoogle Scholar
  2. 2.
    Barbieri, D.F., Braga, D., Ceri, S., Grossniklaus, M.: An execution environment for C-SPARQL queries. In: Proceedings of the 13th International Conference on Extending Database Technology, EDBT ’10, pp. 441–452 (2010)Google Scholar
  3. 3.
    Calbimonte, J.-P., Corcho, O., Gray, A.J.G.: Enabling ontology-based access to streaming data sources. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part I. LNCS, vol. 6496, pp. 96–111. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Fernández, N., Arias, J., Sánchez, L., Fuentes-Lorenzo, D., Corcho, Ó.: RDSZ: an approach for lossless RDF stream compression. In: Presutti, V., d’Amato, C., Gandon, F., d’Aquin, M., Staab, S., Tordai, A. (eds.) ESWC 2014. LNCS, vol. 8465, pp. 52–67. Springer, Heidelberg (2014)Google Scholar
  5. 5.
    Golab, L., Özsu, M.T.: Issues in data stream management. SIGMOD Rec. 32, 5–14 (2003)CrossRefGoogle Scholar
  6. 6.
    Le-Phuoc, D., Nguyen-Mau, H.Q., Parreira, J.X., Hauswirth, M.: A middleware framework for scalable management of linked streams. Web Semant. Sci. Serv. Agents World Wide Web 16(5), 42–51 (2012)CrossRefGoogle Scholar
  7. 7.
    Le-Phuoc, D., Nguyen Mau Quoc, H., Le Van, C., Hauswirth, M.: Elastic and scalable processing of linked stream data in the cloud. In: Alani, H., et al. (eds.) ISWC 2013, Part I. LNCS, vol. 8218, pp. 280–297. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  8. 8.
    Tilak, S., Hubbard, P., Miller, M., Fountain, T.: The ring buffer network bus (RBNB) dataturbine streaming data middleware for environmental observing systems. In: IEEE International Conference on e-Science and Grid Computing, pp. 125–133, December 2007Google Scholar
  9. 9.
    Valle, E.D., Ceri, S., Harmelen, Fv, Fensel, D.: It’s a streaming world! reasoning upon rapidly changing information. IEEE Intell. Syst. 24(6), 83–89 (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Jesús Arias Fisteus
    • 1
  • Norberto Fernández García
    • 1
  • Luis Sánchez Fernández
    • 1
  • Damaris Fuentes-Lorenzo
    • 1
  1. 1.Dpto. Ing. TelemáticaUniversidad Carlos III de MadridLeganés, MadridSpain

Personalised recommendations