A Semantic Web Based Core Engine to Efficiently Perform Sentiment Analysis

  • Diego Reforgiato Recupero
  • Sergio Consoli
  • Aldo Gangemi
  • Andrea Giovanni Nuzzolese
  • Daria Spampinato
Conference paper

DOI: 10.1007/978-3-319-11955-7_28

Part of the Lecture Notes in Computer Science book series (LNCS, volume 8798)
Cite this paper as:
Recupero D.R., Consoli S., Gangemi A., Nuzzolese A.G., Spampinato D. (2014) A Semantic Web Based Core Engine to Efficiently Perform Sentiment Analysis. In: Presutti V., Blomqvist E., Troncy R., Sack H., Papadakis I., Tordai A. (eds) The Semantic Web: ESWC 2014 Satellite Events. ESWC 2014. Lecture Notes in Computer Science, vol 8798. Springer, Cham

Abstract

In this paper we present a domain-independent framework that creates a sentiment analysis model by mixing Semantic Web technologies with natural language processing approaches (This work is supported by the project PRISMA SMART CITIES, funded by the Italian Ministry of Research and Education under the program PON.). Our system, called Sentilo, provides a core sentiment analysis engine which fully exploits semantics. It identifies the holder of an opinion, topics and sub-topics the opinion is referred to, and assesses the opinion trigger. Sentilo uses an OWL opinion ontology to represent all this information with an RDF graph where holders and topics are resolved on Linked Data. Anyone can plug its own opinion scoring algorithm to compute scores of opinion expressing words and come up with a combined scoring algorithm for each identified entities and the overall sentence.

Keywords

Sentic computing Sentiment analysis Semantic features 

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Diego Reforgiato Recupero
    • 1
  • Sergio Consoli
    • 1
  • Aldo Gangemi
    • 1
    • 2
  • Andrea Giovanni Nuzzolese
    • 1
    • 3
  • Daria Spampinato
    • 1
  1. 1.STLab-ISTC Consiglio Nazionale delle RicercheRomeItaly
  2. 2.LIPN, University Paris 13, Sorbone Cit‘e, UMR CNRSParisFrance
  3. 3.Department of Computer Science and EngineeringUniversity of BolognaBolognaItaly

Personalised recommendations