Quantitative Verification of Weighted Kripke Structures

  • Patricia Bouyer
  • Patrick Gardy
  • Nicolas Markey
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8837)


Extending formal verification techniques to handle quantitative aspects, both for the models and for the properties to be checked, has become a central research topic over the last twenty years. Following several recent works, we study model checking for (one-dimensional) weighted Kripke structures with positive and negative weights, and temporal logics constraining the total and/or average weight. We prove decidability when only accumulated weight is constrained, while allowing average-weight constraints alone already is undecidable.


Model Check Temporal Logic Atomic Proposition Kripke Structure Execution Tree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AH94]
    Alur, R., Henzinger, T.A.: A really temporal logic. Journal of the ACM 41(1), 181–203 (1994)MathSciNetCrossRefMATHGoogle Scholar
  2. [BBFR13]
    Bohy, A., Bruyère, V., Filiot, E., Raskin, J.-F.: Synthesis from ltl specifications with mean-payoff objectives. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013 (ETAPS 2013). LNCS, vol. 7795, pp. 169–184. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  3. [BCHK11]
    Boker, U., Chatterjee, K., Henzinger, T.A., Kupferman, O.: Temporal specifications with accumulative values. In: LICS 2011, pp. 43–52. IEEE Comp. Soc. Press (2011)Google Scholar
  4. [BFL+08]
    Bouyer, P., Fahrenberg, U., Larsen, K.G., Markey, N., Srba, J.: Infinite runs in weighted timed automata with energy constraints. In: Cassez, F., Jard, C. (eds.) FORMATS 2008. LNCS, vol. 5215, pp. 33–47. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. [BLM14]
    Bouyer, P., Larsen, K.G., Markey, N.: Lower-bound constrained runs in weighted timed automata. Performance Evaluation 73, 91–109 (2014)CrossRefGoogle Scholar
  6. [BLN03]
    Beyer, D., Lewerentz, C., Noack, A.: Rabbit: A tool for BDD-based verification of real-time systems. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 122–125. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. [BMOU11]
    Bouyer, P., Markey, N., Olschewski, J., Ummels, M.: Measuring permissiveness in parity games: Mean-payoff parity games revisited. In: Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS, vol. 6996, pp. 135–149. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. [CC95]
    Campos, S.V.A., Clarke, E.M.: Real-time symbolic model checking for discrete time models. In: Real-Time Symbolic Model Checking for Discrete Time Models. AMAST Series in Computing, vol. 2, pp. 129–145. World Scientific (1995)Google Scholar
  9. [CC00]
    Comon, H., Cortier, V.: Flatness is not a weakness. In: Clote, P.G., Schwichtenberg, H. (eds.) CSL 2000. LNCS, vol. 1862, pp. 262–276. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  10. [CD12]
    Chatterjee, K., Doyen, L.: Energy parity games. Theoretical Computer Science 458, 49–60 (2012)MathSciNetCrossRefMATHGoogle Scholar
  11. [CDHR10]
    Chatterjee, K., Doyen, L., Henzinger, T.A., Raskin, J.-F.: Generalized mean-payoff and energy games. In: FSTTCS 2010. Leibniz International Proceedings in Informatics, vol. 8, Leibniz-Zentrum für Informatik (2010)Google Scholar
  12. [CE82]
    Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons using branching-time temporal logic. In: Kozen, D. (ed.) Logic of Programs 1981. LNCS, vol. 131, pp. 52–71. Springer, Heidelberg (1982)CrossRefGoogle Scholar
  13. [CGP00]
    Clarke, E.M., Grumberg, O., Peled, D.A.: Model checking. MIT Press (2000)Google Scholar
  14. [CRR12]
    Chatterjee, K., Randour, M., Raskin, J.-F.: Strategy synthesis for multi-dimensional quantitative objectives. In: Koutny, M., Ulidowski, I. (eds.) CONCUR 2012. LNCS, vol. 7454, pp. 115–131. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  15. [DG09]
    Demri, S., Gascon, R.: The effects of bounding syntactic resources on Presburger LTL. Journal of Logic and Computation 19(6), 1541–1575 (2009)MathSciNetCrossRefMATHGoogle Scholar
  16. [DLS10]
    Demri, S., Lazić, R., Sangnier, A.: Model checking memoryful linear-time logics over one-counter automata. Theoretical Computer Science 411(22-24), 2298–2316 (2010)MathSciNetCrossRefMATHGoogle Scholar
  17. [EMSS92]
    Emerson, E.A., Mok, A.K.-L., Sistla, A.P., Srinivasan, J.: Quantitative temporal reasoning. Real-Time Systems 4, 331–352 (1992)CrossRefGoogle Scholar
  18. [EN94]
    Esparza, J., Nielsen, M.: Decidability issues for petri nets - a survey. Bulletin of the EATCS 52, 244–262 (1994)Google Scholar
  19. [GHOW10]
    Göller, S., Haase, C., Ouaknine, J., Worrell, J.: Model checking succinct and parametric one-counter automata. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 575–586. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  20. [GL10]
    Göller, S., Lohrey, M.: Branching-time model checking of one-counter processes. In: STACS 2010. Leibniz International Proceedings in Informatics, vol. 20, pp. 405–416. Leibniz-Zentrum für Informatik (2010)Google Scholar
  21. [Haa12]
    Haase, C.: On the Complexity of Model Checking Counter Automata. PhD thesis, University of Oxford, UK (2012)Google Scholar
  22. [HKOW09]
    Haase, C., Kreutzer, S., Ouaknine, J., Worrell, J.: Reachability in succinct and parametric one-counter automata. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 369–383. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  23. [JLSØ13]
    Jensen, J.F., Larsen, K.G., Srba, J., Oestergaard, L.K.: Local model checking of weighted CTL with upper-bound constraints. In: Bartocci, E., Ramakrishnan, C.R. (eds.) SPIN 2013. LNCS, vol. 7976, pp. 178–195. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  24. [Koy90]
    Koymans, R.: Specifying real-time properties with metric temporal logic. Real-Time Systems 2(4), 255–299 (1990)CrossRefGoogle Scholar
  25. [Min61]
    Minsky, M.L.: Recursive unsolvability of Post’s problem of ”tag” and other topics in theory of Turing machines. Annals of Mathematics 74(3), 437–455 (1961)MathSciNetCrossRefMATHGoogle Scholar
  26. [Pnu77]
    Pnueli, A.: The temporal logic of programs. In: FOCS 1977, pp. 46–57. IEEE Comp. Soc. Press (1977)Google Scholar
  27. [QS82]
    Queille, J.-P., Sifakis, J.: Specification and verification of concurrent systems in CESAR. In: Dezani-Ciancaglini, M., Montanari, U. (eds.) Programming 1982. LNCS, vol. 137, pp. 337–351. Springer, Heidelberg (1982)CrossRefGoogle Scholar
  28. [Ser06]
    Serre, O.: Parity games played on transition graphs of one-counter processes. In: Aceto, L., Ingólfsdóttir, A. (eds.) FOSSACS 2006. LNCS, vol. 3921, pp. 337–351. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  29. [ZP96]
    Zwick, U., Paterson, M.: The complexity of mean payoff games on graphs. Theoretical Computer Science 158(1-2), 343–359 (1996)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Patricia Bouyer
    • 1
  • Patrick Gardy
    • 1
  • Nicolas Markey
    • 1
  1. 1.LSV, CNRS & ENS CachanFrance

Personalised recommendations