Incremental Encoding and Solving of Cardinality Constraints

  • Sven Reimer
  • Matthias Sauer
  • Tobias Schubert
  • Bernd Becker
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8837)

Abstract

Traditional SAT-based MaxSAT solvers encode cardinality constraints directly as part of the CNF and solve the entire optimization problem by a sequence of iterative calls of the underlying SAT solver. The main drawback of such approaches is their dependence on the number of soft clauses: The more soft clauses the MaxSAT instance contains, the larger is the CNF part encoding the cardinality constraints. To counter this drawback, we introduce an innovative encoding of cardinality constraints: Instead of translating the entire and probably bloated constraint network into CNF, a divide-and-conquer approach is used to encode partial constraint networks successively. The resulting subproblems are solved and merged incrementally, reusing not only intermediate local optima, but also additional constraints which are derived from solving the individual subproblems by the back-end SAT solver. Extensive experimental results for the last MaxSAT evaluation benchmark suitew demonstrate that our encoding is in general smaller compared to existing methods using a monolithic encoding of the constraints and converges faster to the global optimum.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lin, P.-C.K., Khatri, S.P.: Application of Max-SAT-based ATPG to optimal cancer therapy design. BMC Genomics 13(suppl. 6), S5 (2012)Google Scholar
  2. 2.
    Favier, A., Elsen, J.-M., De Givry, S., Legarra, A.: Optimal haplotype reconstruction in half-sib families. In: Proceedings of WCB 2010, p. 20 (2010)Google Scholar
  3. 3.
    Reimer, S., Sauer, M., Schubert, T., Becker, B.: Using MaxBMC for Pareto-optimal circuit initialization. In: DATE. IEEE (2014)Google Scholar
  4. 4.
    Menai, M., Al-Yahya, T.: A taxonomy of exact methods for partial Max-SAT. Journal of Computer Science and Technology 28(2), 232–246 (2013)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Zhang, H., Shen, H., Manya, F.: Exact algorithms for MAX-SAT. Electronic Notes in Theoretical Computer Science 86(1), 190–203 (2003)CrossRefGoogle Scholar
  6. 6.
    Sinz, C.: Towards an optimal CNF encoding of boolean cardinality constraints. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 827–831. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Batcher, K.E.: Sorting networks and their applications. In: AFIPS Spring Joint Computing Conference, pp. 307–314. ACM (1968)Google Scholar
  8. 8.
    Bailleux, O., Boufkhad, Y.: Efficient CNF encoding of boolean cardinality constraints. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 108–122. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Codish, M., Zazon-Ivry, M.: Pairwise cardinality networks. In: Clarke, E.M., Voronkov, A. (eds.) LPAR-16 2010. LNCS, vol. 6355, pp. 154–172. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Asín, R., Nieuwenhuis, R., Oliveras, A., Rodríguez-Carbonell, E.: Cardinality networks: a theoretical and empirical study. Constraints 16(2), 195–221 (2011)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Morgenstern, A., Schneider, K.: Synthesis of parallel sorting networks using SAT solvers. In: MBMV, pp. 71–80 (2011)Google Scholar
  12. 12.
    Eén, N., Sörensson, N.: Translating pseudo-Boolean constraints into SAT. Journal on Satisfiability, Boolean Modeling and Computation 2, 1–26 (2006)MATHGoogle Scholar
  13. 13.
    Martins, R., Manquinho, V., Lynce, I.: Exploiting cardinality encodings in parallel maximum satisfiability. In: 2011 23rd IEEE International Conference on Tools with Artificial Intelligence (ICTAI), pp. 313–320. IEEE (2011)Google Scholar
  14. 14.
    Martins, R., Manquinho, V., Lynce, I.: Community-based partitioning for maxSAT solving. In: Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 182–191. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  15. 15.
    Manolios, P., Papavasileiou, V.: Pseudo-Boolean solving by incremental translation to SAT. In: Formal Methods in Computer-Aided Design (FMCAD), pp. 41–45. IEEE (2011)Google Scholar
  16. 16.
    Marques-Silva, J., Planes, J.: Algorithms for maximum satisfiability using unsatisfiable cores. In: Advanced Techniques in Logic Synthesis, Optimizations and Applications, pp. 171–182. Springer (2011)Google Scholar
  17. 17.
    Eighth MaxSAT evaluation (2013), http://maxsat.ia.udl.cat:81/13/
  18. 18.
    Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability. Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press (2009)Google Scholar
  19. 19.
    Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving. Communications of the ACM 5(7), 394–397 (1962)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Eén, N., Sörensson, N.: Temporal induction by incremental SAT solving. Electronic Notes in Theoretical Computer Science 89(4), 543–560 (2003)CrossRefGoogle Scholar
  21. 21.
    Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded model checking. Advances in Computers 58, 117–148 (2003)CrossRefGoogle Scholar
  22. 22.
    Fu, Z., Malik, S.: On solving the partial MAX-SAT problem. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 252–265. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  23. 23.
    Parberry, I.: The pairwise sorting network. Parallel Processing Letters 2(02n03), 205–211 (1992)Google Scholar
  24. 24.
    Schubert, T., Reimer, S.: Antom (2013), https://projects.informatik.uni-freiburg.de/projects/antom
  25. 25.
    Koshimura, M., Zhang, T., Fujita, H., Hasegawa, R.: QMaxSAT: A partial Max-SAT solver system description. Journal on Satisfiability, Boolean Modeling and Computation 8, 95–100 (2012), https://sites.google.com/site/qmaxsat/ MathSciNetGoogle Scholar
  26. 26.
    Morgado, A., Heras, F., Marques-Silva, J.: Improvements to core-guided binary search for MaxSAT. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 284–297. Springer, Heidelberg (2012), http://logos.ucd.ie/wiki/doku.php?id=msuncore CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Sven Reimer
    • 1
  • Matthias Sauer
    • 1
  • Tobias Schubert
    • 1
  • Bernd Becker
    • 1
  1. 1.Institute of Computer ScienceAlbert-Ludwigs-Universität FreiburgFreiburgGermany

Personalised recommendations