Advertisement

Fast Debugging of PRISM Models

  • Christian Dehnert
  • Nils Jansen
  • Ralf Wimmer
  • Erika Ábrahám
  • Joost-Pieter Katoen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8837)

Abstract

In addition to rigorously checking whether a system conforms to a specification, model checking can provide valuable feedback in the form of succinct and understandable counterexamples. In the context of probabilistic systems, path- and subsystem-based counterexamples at the state-space level can be of limited use in debugging. As many probabilistic systems are described in a guarded command language like the one used by the popular model checker Prism, a technique identifying a subset of critical commands has recently been proposed. Based on repeatedly solving MaxSat instances, our novel approach to computing a minimal critical command set achieves a speed-up of up to five orders of magnitude over the previously existing technique.

Keywords

Model Check Target State Probabilistic Program Bound Model Check Prism Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aljazzar, H., Leue, S.: Directed explicit state-space search in the generation of counterexamples for stochastic model checking. IEEE Trans. on Software Engineering 36(1), 37–60 (2010)CrossRefGoogle Scholar
  2. 2.
    Alur, R., Henzinger, T.A.: Reactive modules. Formal Methods in System Design 15(1), 7–48 (1999)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Aspnes, J., Herlihy, M.: Fast randomized consensus using shared memory. Journal of Algorithms 11(3), 441–461 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press (2008)Google Scholar
  5. 5.
    Bellman, R.: Dynamic Programming, 1st edn. Princeton University Press, Princeton (1957)zbMATHGoogle Scholar
  6. 6.
    Gheorghiu Bobaru, M., Păsăreanu, C.S., Giannakopoulou, D.: Automated assume-guarantee reasoning by abstraction refinement. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 135–148. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Bulychev, P., David, A., Guldstrand Larsen, K., Legay, A., Mikučionis, M., Bøgsted Poulsen, D.: Checking and distributing statistical model checking. In: Goodloe, A.E., Person, S. (eds.) NFM 2012. LNCS, vol. 7226, pp. 449–463. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  8. 8.
    Canetti, R., Cheung, L., Kaynar, D.K., Liskov, M., Lynch, N.A., Pereira, O., Segala, R.: Analyzing security protocols using time-bounded task-PIOAs. Discrete Event Dynamic Systems 18(1), 111–159 (2008)zbMATHCrossRefGoogle Scholar
  9. 9.
    Chatterjee, K., Chmelík, M., Daca, P.: CEGAR for qualitative analysis of probabilistic systems. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 473–490. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  10. 10.
    Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 154–169. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  11. 11.
    Clarke, E.M., Veith, H.: Counterexamples revisited: Principles, algorithms, applications. In: Dershowitz, N. (ed.) Verification: Theory and Practice. LNCS, vol. 2772, pp. 208–224. Springer, Heidelberg (2004)Google Scholar
  12. 12.
    de Moura, L.M., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Fu, Z., Malik, S.: On solving the partial MAX-SAT problem. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 252–265. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Gastin, P., Moro, P.: Minimal counterexample generation for SPIN. In: Bošnački, D., Edelkamp, S. (eds.) SPIN 2007. LNCS, vol. 4595, pp. 24–38. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Gurobi optimization, inc.: Gurobi optimizer reference manual version 5.6 (2014), http://www.gurobi.com/resources/documentation
  16. 16.
    Han, T., Katoen, J.-P., Damman, B.: Counterexample generation in probabilistic model checking. IEEE Trans. on Software Engineering 35(2), 241–257 (2009)CrossRefGoogle Scholar
  17. 17.
    Hansen, H., Geldenhuys, J.: Cheap and small counterexamples. In: Proc. of SEFM, pp. 53–62. IEEE Computer Society (2008)Google Scholar
  18. 18.
    Hermanns, H., Wachter, B., Zhang, L.: Probabilistic CEGAR. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 162–175. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  19. 19.
    Jansen, N., Wimmer, R., Ábrahám, E., Zajzon, B., Katoen, J.-P., Becker, B.: Symbolic counterexample generation for large discrete-time Markov chains. Science of Computer Programming 91(A), 90–114 (2014)CrossRefGoogle Scholar
  20. 20.
    Katoen, J.-P., van de Pol, J., Stoelinga, M., Timmer, M.: A linear process-algebraic format with data for probabilistic automata. Theoretical Computer Science 413(1), 36–57 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Katoen, J.-P., Zapreev, I.S., Hahn, E.M., Hermanns, H., Jansen, D.N.: The ins and outs of the probabilistic model checker MRMC. Performance Evaluation 68(2), 90–104 (2011)CrossRefGoogle Scholar
  22. 22.
    Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  23. 23.
    Leitner-Fischer, F., Leue, S.: Probabilistic fault tree synthesis using causality computation. IJCCBS 4(2), 119–143 (2013)CrossRefGoogle Scholar
  24. 24.
    Nielson, F., Nielson, H.R., Hankin, C.: Principles of program analysis (2. corr. print). Springer (2005)Google Scholar
  25. 25.
    Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Programming, 1st edn. John Wiley & Sons, Inc., New York (1994)Google Scholar
  26. 26.
    Schuppan, V., Biere, A.: Shortest counterexamples for symbolic model checking of LTL with past. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 493–509. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  27. 27.
    Segala, R., Lynch, N.A.: Probabilistic simulations for probabilistic processes. Nordic Journal of Computing 2(2), 250–273 (1995)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Stoelinga, M.: Fun with firewire: A comparative study of formal verification methods applied to the IEEE 1394 root contention protocol. Formal Aspects of Computing 14(3), 328–337 (2003)CrossRefGoogle Scholar
  29. 29.
    Wimmer, R., Braitling, B., Becker, B.: Counterexample generation for discrete-time Markov chains using bounded model checking. In: Jones, N.D., Müller-Olm, M. (eds.) VMCAI 2009. LNCS, vol. 5403, pp. 366–380. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  30. 30.
    Wimmer, R., Jansen, N., Ábrahám, E., Becker, B., Katoen, J.-P.: Minimal critical subsystems for discrete-time Markov models. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 299–314. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  31. 31.
    Wimmer, R., Jansen, N., Ábrahám, E., Katoen, J.-P., Becker, B.: Minimal counterexamples for linear-time probabilistic verification. Theoretical Computer Science (2014), doi:10.1016/j.tcs.2014.06.020 (accepted for publication)Google Scholar
  32. 32.
    Wimmer, R., Jansen, N., Vorpahl, A., Ábrahám, E., Katoen, J.-P., Becker, B.: High-level counterexamples for probabilistic automata. In: Joshi, K., Siegle, M., Stoelinga, M., D’Argenio, P.R. (eds.) QEST 2013. LNCS, vol. 8054, pp. 18–33. Springer, Heidelberg (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Christian Dehnert
    • 1
  • Nils Jansen
    • 1
  • Ralf Wimmer
    • 2
  • Erika Ábrahám
    • 1
  • Joost-Pieter Katoen
    • 1
  1. 1.RWTH Aachen UniversityGermany
  2. 2.Albert-Ludwigs-Universität FreiburgGermany

Personalised recommendations