Advertisement

Order Preserving Prefix Tables

  • Md. Mahbubul Hasan
  • A. S. M. Sohidull Islam
  • Mohammad Saifur Rahman
  • M. Sohel Rahman
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8799)

Abstract

In the Order Preserving Pattern Matching (OPPM) problem, we have a text T and a pattern P on an integer alphabet as input. And the goal is to locate a fragment which is order-isomorphic with the pattern. Two sequences over integer alphabet are order-isomorphic if the relative order between any two elements at the same positions in both sequences is the same. In this paper we present an efficient algorithm to construct an interesting and useful data structure, namely, prefix table, from the order preserving point of view.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bland, W., Kucherov, G., Smyth, W.F.: Prefix table construction and conversion. In: Lecroq, T., Mouchard, L. (eds.) IWOCA 2013. LNCS, vol. 8288, pp. 41–53. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  2. 2.
    Cho, S., Na, J.C., Park, K., Sim, J.S.: Fast order-preserving pattern matching. In: Widmayer, P., Xu, Y., Zhu, B. (eds.) COCOA 2013. LNCS, vol. 8287, pp. 295–305. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  3. 3.
    Crochemore, M., Iliopoulos, C.S., Kociumaka, T., Kubica, M., Langiu, A., Pissis, S.P., Radoszewski, J., Rytter, W., Waleń, T.: Order-preserving incomplete suffix trees and order-preserving indexes. In: Kurland, O., Lewenstein, M., Porat, E. (eds.) SPIRE 2013. LNCS, vol. 8214, pp. 84–95. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  4. 4.
    Crochemore, M., Iliopoulos, C.S., Kociumaka, T., Kubica, M., Langiu, A., Pissis, S.P., Radoszewski, J., Rytter, W., Walen, T.: Order-preserving suffix trees and their algorithmic applications. CoRR, abs/1303.6872 (2013)Google Scholar
  5. 5.
    Gawrychowski, P., Uznanski, P.: Order-preserving pattern matching with k mismatches. CoRR, abs/1309.6453 (2013)Google Scholar
  6. 6.
    Kim, J., Eades, P., Fleischer, R., Hong, S.-H., Iliopoulos, C.S., Park, K., Puglisi, S.J., Tokuyama, T.: Order preserving matching. CoRR, abs/1302.4064 (2013)Google Scholar
  7. 7.
    Kubica, M., Kulczynski, T., Radoszewski, J., Rytter, W., Walen, T.: A linear time algorithm for consecutive permutation pattern matching. Inf. Process. Lett. 113(12), 430–433 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Main, M.G., Lorentz, R.J.: An o(n log n) algorithm for finding all repetitions in a string. J. Algorithms 5(3), 422–432 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Smyth, W.F.: Computing patterns in strings. Pearson Addison-Wesley (2003)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Md. Mahbubul Hasan
    • 1
  • A. S. M. Sohidull Islam
    • 2
  • Mohammad Saifur Rahman
    • 1
  • M. Sohel Rahman
    • 1
  1. 1.AlEDA Group, Department of CSEBUETDhakaBangladesh
  2. 2.Department of Computational Engineering and ScienceMcMaster UniversityHamiltonCanada

Personalised recommendations