Explass: Exploring Associations between Entities via Top-K Ontological Patterns and Facets

  • Gong Cheng
  • Yanan Zhang
  • Yuzhong Qu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8797)


Searching for associations between entities is needed in many areas. On the Semantic Web, it usually boils down to finding paths that connect two entities in an entity-relation graph. Given the increasing volume of data, apart from the efficiency of path finding, recent research interests have focused on how to help users explore a large set of associations that have been found. To achieve this, we propose an approach to exploratory association search, called Explass, which provides a flat list (top-K) of clusters and facet values for refocusing and refining the search. Each cluster is labeled with an ontological pattern, which gives a conceptual summary of the associations in the cluster. Facet values comprise classes of entities and relations appearing in associations. To recommend frequent, informative, and small-overlapping patterns and facet values, we exploit ontological semantics, query context, and information theory. We compare Explass with two existing approaches by conducting a user study over DBpedia, and test the statistical significance of the results.


Association exploration clustering exploratory search faceted search ontological association pattern 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aleman-Meza, B., Halaschek-Wiener, C., Arpinar, I.B., Ramakrishnan, C., Sheth, A.P.: Ranking Complex Relationships on the Semantic Web. IEEE Internet Comput. 9(3), 37–44 (2005)CrossRefGoogle Scholar
  2. 2.
    Anyanwu, K., Maduko, A., Sheth, A.: SemRank: Ranking Complex Relationship Search Results on the Semantic Web. In: 14th International Conference on World Wide Web, pp. 117–127. ACM, New York (2005)CrossRefGoogle Scholar
  3. 3.
    Anyanwu, K., Sheth, A.: ρ-Queries: Enabling Querying for Semantic Associations on the Semantic Web. In: 12th International Conference on World Wide Web, pp. 690–699. ACM, New York (2003)Google Scholar
  4. 4.
    Arguello, J., Wu, W.-C., Kelly, D., Edwards, A.: Task Complexity, Vertical Display and User Interaction in Aggregated Search. In: 35th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 435–444. ACM, New York (2012)Google Scholar
  5. 5.
    Chen, N., Prasanna, V.K.: Learning to Rank Complex Semantic Relationships. Int’l J. Semant. Web Inf. Syst. 8(4), 1–19 (2012)CrossRefzbMATHGoogle Scholar
  6. 6.
    Fang, L., Das Sarma, A., Yu, C., Bohannon, P.: REX: Explaining Relationships between Entity Pairs. Proc. VLDB Endowment 5(3), 241–252 (2011)CrossRefGoogle Scholar
  7. 7.
    Gubichev, A., Neumann, T.: Path Query Processing on Very Large RDF Graphs. In: 14th International Workshop on the Web and Databases (2011)Google Scholar
  8. 8.
    Han, J., Kamber, M., Pei, J.: Data Mining: Concepts and Techniques. Morgan Kaufmann, Waltham (2011)Google Scholar
  9. 9.
    Hearst, M.A.: Clustering versus Faceted Categories for Information Exploration. Commun. ACM 49(4), 59–61 (2006)CrossRefGoogle Scholar
  10. 10.
    Heim, P., Lohmann, S., Stegemann, T.: Interactive Relationship Discovery via the Semantic Web. In: Aroyo, L., Antoniou, G., Hyvönen, E., ten Teije, A., Stuckenschmidt, H., Cabral, L., Tudorache, T. (eds.) ESWC 2010, Part I. LNCS, vol. 6088, pp. 303–317. Springer, Heidelberg (2010)Google Scholar
  11. 11.
    Janik, M., Kochut, K.: BRAHMS: A Workbench RDF Store and High Performance Memory System for Semantic Association Discovery. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 431–445. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Kasneci, G., Elbassuoni, S., Weikum, G.: MING: Mining Informative Entity Relationship Subgraphs. In: 18th ACM Conference on Information and Knowledge Management, pp. 1653–1656. ACM, New York (2009)Google Scholar
  13. 13.
    Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer, Heidelberg (2004)CrossRefzbMATHGoogle Scholar
  14. 14.
    Lee, J., Hwang, S.-W., Nie, Z., Wen, J.-R.: Query Result Clustering for Object-level Search. In: 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1205–1214. ACM, New York (2009)CrossRefGoogle Scholar
  15. 15.
    Luo, G., Tang, C., Tian, Y.-L.: Answering Relationship Queries on the Web. In: 16th International Conference on World Wide Web, pp. 561–570. ACM, New York (2007)CrossRefGoogle Scholar
  16. 16.
    Marchionini, G.: Exploratory Search: From Finding to Understanding. Commun. ACM 49(4), 41–46 (2006)CrossRefGoogle Scholar
  17. 17.
    Oren, E., Delbru, R., Decker, S.: Extending Faceted Navigation for RDF Data. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 559–572. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  18. 18.
    Zaki, M.J., Hsiao, C.-J.: CHARM: An Efficient Algorithm for Closed Itemset Mining. In: 2nd SIAM International Conference on Data Mining, pp. 457–473. SIAM, Philadelphia (2002)Google Scholar
  19. 19.
    Zhang, Y., Cheng, G., Qu, Y.: Towards Exploratory Relationship Search: A Clustering-based Approach. In: Kim, W., Ding, Y., Kim, H.-G. (eds.) JIST 2013. LNCS, vol. 8388, pp. 277–293. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  20. 20.
    Zhou, M., Pan, Y., Wu, Y.: Conkar: Constraint Keyword-based Association Discovery. In: 20th ACM International Conference on Information and Knowledge Management, pp. 2553–2556. ACM, New York (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Gong Cheng
    • 1
  • Yanan Zhang
    • 1
  • Yuzhong Qu
    • 1
  1. 1.State Key Laboratory for Novel Software TechnologyNanjing UniversityNanjingP.R. China

Personalised recommendations