Strategies for Executing Federated Queries in SPARQL1.1

  • Carlos Buil-Aranda
  • Axel Polleres
  • Jürgen Umbrich
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8797)

Abstract

A common way for exposing RDF data on the Web is by means of SPARQL endpoints which allow end users and applications to query just the RDF data they want. However, servers hosting SPARQL endpoints often restrict access to the data by limiting the amount of results returned per query or the amount of queries per time that a client may issue. As this may affect query completeness when using SPARQL1.1’s federated query extension, we analysed different strategies to implement federated queries with the goal to circumvent endpoint limits. We show that some seemingly intuitive methods for decomposing federated queries provide unsound results in the general case, and provide fixes or discuss under which restrictions these recipes are still applicable. Finally, we evaluate the proposed strategies for checking their feasibility in practice.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Buil-Aranda, C., Arenas, M., Corcho, O., Polleres, A.: Federating Queries in SPARQL 1.1: Syntax, Semantics and Evaluation. J. Web Semantics 18(1) (2012)Google Scholar
  2. 2.
    Buil-Aranda, C., Hogan, A., Umbrich, J., Vandenbussche, P.-Y.: SPARQL Web-Querying Infrastructure: Ready for Action? In: Alani, H., et al. (eds.) ISWC 2013, Part II. LNCS, vol. 8219, pp. 277–293. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  3. 3.
    Harris, S., Seaborne, A.: SPARQL 1.1 Query Language (January 2012)Google Scholar
  4. 4.
    Jayram, T.S., Kolaitis, P.G., Vee, E.: The containment problem for real conjunctive queries with inequalities. In: 25th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (PODS), pp. 80–89 (2006)Google Scholar
  5. 5.
    Kossmann, D.: The state of the art in distributed query processing. ACM Comput. Surv. 32(4), 422–469 (2000)CrossRefGoogle Scholar
  6. 6.
    Letelier, A., Pérez, J., Pichler, R., Skritek, S.: Static analysis and optimization of semantic web queries. ACM Trans. Database Syst. 38(4), 25 (2013)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Montoya, G., Vidal, M.-E., Acosta, M.: A heuristic-based approach for planning federated sparql queries. In: Workshop on Consuming Linked Data (COLD) (2012)Google Scholar
  8. 8.
    Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of SPARQL. TODS 34(3) (2009)Google Scholar
  9. 9.
    Prud’hommeaux, E., Buil-Aranda, C.: SPARQL 1.1 Federated Query (March 2013)Google Scholar
  10. 10.
    Quilitz, B., Leser, U.: Querying distributed rdf data sources with sparql. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 524–538. Springer, Heidelberg (2008)Google Scholar
  11. 11.
    Schmidt, M., Meier, M., Lausen, G.: Foundations of SPARQL query optimization. In: ICDT 2010, Lausanne, Switzerland (March 2010)Google Scholar
  12. 12.
    Schwarte, A., Haase, P., Hose, K., Schenkel, R., Schmidt, M.: FedX: Optimization techniques for federated query processing on linked data. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011, Part I. LNCS, vol. 7031, pp. 601–616. Springer, Heidelberg (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Carlos Buil-Aranda
    • 1
  • Axel Polleres
    • 2
  • Jürgen Umbrich
    • 2
  1. 1.Department of Computer SciencePontificia Universidad CatólicaChile
  2. 2.Vienna University of Economy and Business (WU)Austria

Personalised recommendations