Advertisement

Adapting Semantic Sensor Networks for Smart Building Diagnosis

  • Joern Ploennigs
  • Anika Schumann
  • Freddy Lécué
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8797)

Abstract

The Internet of Things is one of the next big changes in which devices, objects, and sensors are getting linked to the semantic web. However, the increasing availability of generated data leads to new integration problems. In this paper we present an architecture and approach that illustrates how semantic sensor networks, semantic web technologies, and reasoning can help in real-world applications to automatically derive complex models for analytics tasks such as prediction and diagnostics. We demonstrate our approach for buildings and their numerous connected sensors and show how our semantic framework allows us to detect and diagnose abnormal building behavior. This can lead to not only an increase of occupant well-being but also to a reduction of energy use. Given that buildings consume 40% of the world’s energy use we therefore also make a contribution towards global sustainability. The experimental evaluation shows the benefits of our approach for buildings at IBM’s Technology Campus in Dublin.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pfisterer, D., Romer, K., Bimschas, D., et al.: SPITFIRE: Toward a semantic web of things. IEEE Commun. Mag. 49(11), 40–48 (2011)CrossRefGoogle Scholar
  2. 2.
    Compton, M., Barnaghi, P., Bermudez, L., et al.: The SSN ontology of the W3C semantic sensor network incubator group. Web Semantics 17, 25–32 (2012)CrossRefGoogle Scholar
  3. 3.
    Han, J., Jeong, Y.K., Lee, I.: Efficient building energy management system based on ontology, inference rules, and simulation. In: Int. Conf. on Int. Building and Mgmt., pp. 295–299 (2011)Google Scholar
  4. 4.
    Lécué, F., Schumann, A., Sbodio, M.L.: Applying semantic web technologies for diagnosing road traffic congestions. In: Cudré-Mauroux, P., et al. (eds.) ISWC 2012, Part II. LNCS, vol. 7650, pp. 114–130. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  5. 5.
    International Energy Agency: World energy outlook 2012 (2012)Google Scholar
  6. 6.
    Ploennigs, J., Hensel, B., Dibowski, H., Kabitzsch, K.: BASont - a modular, adaptive building automation system ontology. In: IEEE IECON, pp. 4827–4833 (2012)Google Scholar
  7. 7.
    Bonino, D., Corno, F.: DogOnt-ontology modeling for intelligent domotic environments. In: Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 790–803. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Zhou, Q., Wang, S., Ma, Z.: A model-based fault detection and diagnosis strategy for HVAC systems. Int. J. Energ. Res. 33(10), 903–918 (2009)CrossRefGoogle Scholar
  9. 9.
    Katipamula, S., Brambley, M.: Methods for fault detection, diagnostics, and prognostics for building systems - a review. HVAC&R Research 11(1), 3–25 (2005)CrossRefGoogle Scholar
  10. 10.
    Jacoba, D., Dietza, S., Komharda, S., Neumanna, C., Herkela, S.: Black-box models for fault detection and performance monitoring of buildings. J. Build. Perf. Sim. 3(1), 53–62 (2010)CrossRefGoogle Scholar
  11. 11.
    Schein, J., Bushby, S.T.: A hierarchical rule-based fault detection and diagnostic method for HVAC systems. HVAC&R Research 1(1), 111–125 (2006)CrossRefGoogle Scholar
  12. 12.
    Brady, N., Lecue, F., Schumann, A., Verscheure, O.: Configuring Building Energy Management Systems Using Knowledge Encoded in Building Management System Points Lists. US20140163750 A1 (2012)Google Scholar
  13. 13.
    Tallevi-Diotallevi, S., Kotoulas, S., Foschini, L., Lécué, F., Corradi, A.: Real-time urban monitoring in Dublin using semantic and stream technologies. In: Alani, H., et al. (eds.) ISWC 2013, Part II. LNCS, vol. 8219, pp. 178–194. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  14. 14.
    Ploennigs, J., Chen, B., Schumann, A., Brady, N.: Exploiting generalized additive models for diagnosing abnormal energy use in buildings. In: BuildSys - 5th ACM Workshop on Embedded Systems for Energy-Efficient Buildings, pp. 1–8 (2013)Google Scholar
  15. 15.
    Janowicz, K., Compton, M.: The stimulus-sensor-observation ontology design pattern and its integration into the semantic sensor network ontology. In: Int. Workshop on Semantic Sensor Networks, pp. 7–11 (2010)Google Scholar
  16. 16.
    Ploennigs, J., Schumann, A., Lecue, F.: Extending semantic sensor networks for automatically tackling smart building problems. In: ECAI - PAIS (2014)Google Scholar
  17. 17.
    Sahlin, P., Eriksson, L., Grozman, P., Johnsson, H., Shapovalov, A., Vuolle, M.: Whole-building simulation with symbolic DAE equations and general purpose solvers. Building and Environment 39(8), 949–958 (2004)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Joern Ploennigs
    • 1
  • Anika Schumann
    • 1
  • Freddy Lécué
    • 1
  1. 1.IBM ResearchUSA

Personalised recommendations