Abstraction Refinement for Ontology Materialization

  • Birte Glimm
  • Yevgeny Kazakov
  • Thorsten Liebig
  • Trung-Kien Tran
  • Vincent Vialard
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8797)


We present a new procedure for ontology materialization (computing all entailed instances of every atomic concept) in which reasoning over a large ABox is reduced to reasoning over a smaller “abstract” ABox. The abstract ABox is obtained as the result of a fixed-point computation involving two stages: 1) abstraction: partition the individuals into equivalence classes based on told information and use one representative individual per equivalence class, and 2) refinement: iteratively split (refine) the equivalence classes, when new assertions are derived that distinguish individuals within the same class. We prove that the method is complete for Horn \(\mathcal{ALCHOI}\) ontologies, that is, all entailed instances will be derived once the fixed-point is reached. We implement the procedure in a new database-backed reasoning system and evaluate it empirically on existing ontologies with large ABoxes. We demonstrate that the obtained abstract ABoxes are significantly smaller than the original ones and can be computed with few refinement steps.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bishop, B., Kiryakov, A., Ognyanoff, D., Peikov, I., Tashev, Z., Velkov, R.: OWLIM: A family of scalable semantic repositories. Semantic Web J. 2(1), 33–42 (2011)Google Scholar
  2. 2.
    Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning and efficient query answering in description logics: The DL-Lite family. J. of Automated Reasoning 39(3), 385–429 (2007)CrossRefzbMATHGoogle Scholar
  3. 3.
    Dolby, J., Fokoue, A., Kalyanpur, A., Schonberg, E., Srinivas, K.: Scalable highly expressive reasoner (SHER). J. of Web Semantics 7(4), 357–361 (2009)CrossRefGoogle Scholar
  4. 4.
    Fokoue, A., Kershenbaum, A., Ma, L., Schonberg, E., Srinivas, K.: The summary ABox: Cutting ontologies down to size. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 343–356. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Glimm, B., Kazakov, Y., Liebig, T., Tran, T.K., Vialard, V.: Abstraction Refinement for Ontology Materialization. Tech. rep., University of Ulm and derivo GmbH (2014),
  6. 6.
    Kalyanpur, A., Parsia, B., Horridge, M., Sirin, E.: Finding all justifications of OWL DL entailments. In: Aberer, K., et al. (eds.) ISWC/ASWC 2007. LNCS, vol. 4825, pp. 267–280. Springer, Heidelberg (2007)Google Scholar
  7. 7.
    Kollia, I., Glimm, B.: Optimizing SPARQL query answering over OWL ontologies. J. of Artificial Intelligence Research (JAIR) 48, 253–303 (2013)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Kolovski, V., Wu, Z., Eadon, G.: Optimizing enterprise-scale OWL 2 RL reasoning in a relational database system. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part I. LNCS, vol. 6496, pp. 436–452. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Kontchakov, R., Lutz, C., Toman, D., Wolter, F., Zakharyaschev, M.: The combined approach to query answering in DL-Lite. In: Proc. of the 12th Int. Conf. on the Principles of Knowledge Representation and Reasoning (KR 2010). AAAI Press (2010)Google Scholar
  10. 10.
    Lutz, C., Toman, D., Wolter, F.: Conjunctive query answering in the description logic \(\mathcal{EL}\) using a relational database system. In: Proc. of the 21st Int. Joint Conf. on Artificial Intelligence (IJCAI 2009), pp. 2070–2075 (2009)Google Scholar
  11. 11.
    Motik, B., Cuenca Grau, B., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C. (eds.): OWL 2 Web Ontology Language: Profiles, 2nd edn. W3C Recommendation (December 11, 2012),
  12. 12.
    Pérez-Urbina, H., Motik, B., Horrocks, I.: Tractable query answering and rewriting under description logic constraints. J. of Applied Logic 8(2), 186–209 (2010)CrossRefzbMATHGoogle Scholar
  13. 13.
    Simančík, F.: Elimination of complex RIAs without automata. In: Proc. of the 25th Int. Workshop on Description Logics (2012)Google Scholar
  14. 14.
    Urbani, J., Kotoulas, S., Maassen, J., van Harmelen, F., Bal, H.: WebPIE: A web-scale parallel inference engine using MapReduce. J. of Web Semantics 10, 59–75 (2012)CrossRefGoogle Scholar
  15. 15.
    Wandelt, S.: Efficient instance retrieval over semi-expressive ontologies. Ph.D. thesis, Hamburg University of Technology (2011)Google Scholar
  16. 16.
    Wandelt, S., Möller, R.: Towards ABox modularization of semi-expressive description logics. J. of Applied Ontology 7(2), 133–167 (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Birte Glimm
    • 1
  • Yevgeny Kazakov
    • 1
  • Thorsten Liebig
    • 2
  • Trung-Kien Tran
    • 1
  • Vincent Vialard
    • 2
  1. 1.University of UlmUlmGermany
  2. 2.derivo GmbHUlmGermany

Personalised recommendations