Pushing the Boundaries of Tractable Ontology Reasoning

  • David Carral
  • Cristina Feier
  • Bernardo Cuenca Grau
  • Pascal Hitzler
  • Ian Horrocks
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8797)


We identify a class of Horn ontologies for which standard reasoning tasks such as instance checking and classification are tractable. The class is general enough to include the OWL 2 EL, QL, and RL profiles. Verifying whether a Horn ontology belongs to the class can be done in polynomial time. We show empirically that the class includes many real-world ontologies that are not included in any OWL 2 profile, and thus that polynomial time reasoning is possible for these ontologies.


Directed Acyclic Graph Description Logic Reasoning Algorithm Cardinality Restriction Datalog Program 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.): The Description Logic Handbook: Theory, Implementation, and Applications, 2nd edn. Cambridge University Press (2007)Google Scholar
  2. 2.
    Baader, F., Brandt, S., Lutz, C.: Pushing the \(\mathcal{EL}\) envelope. In: Kaelbling, L.P., Saffiotti, A. (eds.) IJCAI, pp. 364–369 (2005)Google Scholar
  3. 3.
    Baader, F., Lutz, C., Suntisrivaraporn, B.: CEL - a polynomial-time reasoner for life science ontologies. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 287–291. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Baget, J.-F., Mugnier, M.-L., Thomazo, M.: Towards farsighted dependencies for existential rules. In: Rudolph, S., Gutierrez, C. (eds.) RR 2011. LNCS, vol. 6902, pp. 30–45. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  5. 5.
    Bishop, B., Fischer, F.: IRIS - integrated rule inference system. In: ARea (2008)Google Scholar
  6. 6.
    Bishop, B., Kiryakov, A., Ognyanoff, D., Peikov, I., Tashev, Z., Velkov, R.: OWLim: A family of scalable semantic repositories. Semantic Web J. 2(1), 33–42 (2011)Google Scholar
  7. 7.
    Calvanese, D., Giacomo, G.D., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning and efficient query answering in description logics: The DL-Lite family. J. Automated Reasoning (JAR) 39(3), 385–429 (2007)CrossRefzbMATHGoogle Scholar
  8. 8.
    Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Poggi, A., Rodriguez-Muro, M., Rosati, R., Ruzzi, M., Savo, D.F.: The MASTRO system for ontology-based data access. Semantic Web J. 2(1), 43–53 (2011)Google Scholar
  9. 9.
    Carral, D., Feier, C., Cuenca Grau, B., Hitzler, P., Horrocks, I.: \(\mathcal{EL}\)-ifying ontologies. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS, vol. 8562, pp. 464–479. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  10. 10.
    Cuenca Grau, B., Horrocks, I., Krötzsch, M., Kupke, C., Magka, D., Motik, B., Wang, Z.: Acyclicity notions for existential rules and their application to query answering in ontologies. JAIR 47, 741–808 (2013)zbMATHGoogle Scholar
  11. 11.
    Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: semantics and query answering. Theor. Comput. Sci. 336(1), 89–124 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Grosof, B., Horrocks, I., Volz, R., Decker, S.: Description logic programs: combining logic programs with description logic. In: WWW, pp. 48–57 (2003)Google Scholar
  13. 13.
    Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible \(\mathcal{SROIQ}\). In: Doherty, P., Mylopoulos, J., Welty, C. (eds.) Proc. 10th Int. Conf. on Principles of Knowledge Representation and Reasoning (KR 2006), pp. 57–67. AAAI Press (2006)Google Scholar
  14. 14.
    Horrocks, I., Sattler, U.: A tableaux decision procedure for \(\mathcal{SHOIQ}\). In: IJCAI, pp. 448–453 (2005)Google Scholar
  15. 15.
    Hustadt, U., Motik, B., Sattler, U.: Data complexity of reasoning in very expressive description logics. In: IJCAI, pp. 466–471 (2005)Google Scholar
  16. 16.
    Kazakov, Y., Krötzsch, M., Simančík, F.: The incredible ELK: From polynomial procedures to efficient reasoning with \(\mathcal{EL}\) ontologies. J. Autom. Reas. (JAR) (2013)Google Scholar
  17. 17.
    Kontchakov, R., Lutz, C., Toman, D., Wolter, F., Zakharyaschev, M.: The combined approach to ontology-based data access. In: IJCAI, pp. 2656–2661 (2011)Google Scholar
  18. 18.
    Krötzsch, M., Rudolph, S.: Extending decidable existential rules by joining acyclicity and guardedness. In: IJCAI, pp. 963–968 (2011)Google Scholar
  19. 19.
    Krötzsch, M., Rudolph, S., Hitzler, P.: Complexity boundaries for Horn description logics. In: AAAI, pp. 452–457 (2007)Google Scholar
  20. 20.
    Krötzsch, M., Rudolph, S., Hitzler, P.: Complexities of Horn description logics. ACM Trans. Comp. 14(1), 2:1–2:36 (2013)Google Scholar
  21. 21.
    Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV system for knowledge representation and reasoning. ACM Trans. Comput. Log. 7(3), 499–562 (2006)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Marnette, B.: Generalized schema-mappings: from termination to tractability. In: PODS, pp. 13–22 (2009)Google Scholar
  23. 23.
    Motik, B., Cuenca Grau, B., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C. (eds.): OWL 2 Web Ontology Language: Profiles. W3C Recommendation (October 27, 2009),
  24. 24.
    Motik, B., Nenov, Y., Piro, R., Horrocks, I., Olteanu, D.: Parallel materialisation of Datalog programs in centralised, main-memory RDF systems. In: AAAI (2014)Google Scholar
  25. 25.
    Ortiz, M., Rudolph, S., Simkus, M.: Worst-case optimal reasoning for the Horn-DL fragments of OWL 1 and 2. In: KR (2010)Google Scholar
  26. 26.
    Rodriguez-Muro, M., Calvanese, D.: High performance query answering over DL-Lite ontologies. In: KR (2012)Google Scholar
  27. 27.
    Stefanoni, G., Motik, B., Horrocks, I.: Introducing nominals to the combined query answering approaches for \(\mathcal{EL}\). In: AAAI (2013)Google Scholar
  28. 28.
    Wu, Z., Eadon, G., Das, S., Chong, E.I., Kolovski, V., Annamalai, M., Srinivasan, J.: Implementing an inference engine for RDFS/OWL constructs and user-defined rules in Oracle. In: ICDE, pp. 1239–1248 (2008)Google Scholar
  29. 29.
    Zhou, Y., Grau, B.C., Horrocks, I., Wu, Z., Banerjee, J.: Making the most of your triple store: Query answering in OWL 2 using an RL reasoner. In: WWW (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • David Carral
    • 1
  • Cristina Feier
    • 2
  • Bernardo Cuenca Grau
    • 2
  • Pascal Hitzler
    • 1
  • Ian Horrocks
    • 2
  1. 1.Department of Computer ScienceWright State UniversityDaytonUSA
  2. 2.Department of Computer ScienceUniversity of OxfordOxfordUK

Personalised recommendations