Detecting and Correcting Conservativity Principle Violations in Ontology-to-Ontology Mappings

  • Alessandro Solimando
  • Ernesto Jiménez-Ruiz
  • Giovanna Guerrini
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8797)


In order to enable interoperability between ontology-based systems, ontology matching techniques have been proposed. However, when the generated mappings suffer from logical flaws, their usefulness may be diminished. In this paper we present an approximate method to detect and correct violations to the so-called conservativity principle where novel subsumption entailments between named concepts in one of the input ontologies are considered as unwanted. We show that this is indeed the case in our application domain based on the EU Optique project. Additionally, our extensive evaluation conducted with both the Optique use case and the data sets from the Ontology Alignment Evaluation Initiative (OAEI) suggests that our method is both useful and feasible in practice.


Conjunctive Query Conservativity Principle Ontology Mapping Mapping Repair Ontology Match 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agrawal, R., Borgida, A., Jagadish, H.V.: Efficient Management of Transitive Relationships in Large Data and Knowledge Bases. In: ACM SIGMOD Conf. on Manag. of Data (1989)Google Scholar
  2. 2.
    Beisswanger, E., Hahn, U., et al.: Towards valid and reusable reference alignmentsten basic quality checks for ontology alignments and their application to three different reference data sets. J. Biomed. Semant. 3(suppl. 1), S4 (2012)Google Scholar
  3. 3.
    Bodenreider, O.: The Unified Medical Language System (UMLS): integrating biomedical terminology. Nucleic Acids Research 32, 267–270 (2004)CrossRefGoogle Scholar
  4. 4.
    Borgida, A., Serafini, L.: Distributed Description Logics: Assimilating Information from Peer Sources. J. Data Sem. 1, 153–184 (2003)CrossRefGoogle Scholar
  5. 5.
    Christophides, V., Plexousakis, D., Scholl, M., Tourtounis, S.: On Labeling Schemes for the Semantic Web. In: Int’l World Wide Web Conf. (WWW), pp. 544–555 (2003)Google Scholar
  6. 6.
    Cuenca Grau, B., Horrocks, I., Motik, B., Parsia, B., Patel-Schneider, P.F., Sattler, U.: OWL 2: The next step for OWL. J. Web Sem. 6(4), 309–322 (2008)CrossRefGoogle Scholar
  7. 7.
    Cuenca Grau, B., Horrocks, I., Kazakov, Y., Sattler, U.: Modular Reuse of Ontologies: Theory and Practice. J. Artif. Intell. Res. 31, 273–318 (2008)MathSciNetzbMATHGoogle Scholar
  8. 8.
    David, J., Euzenat, J., Scharffe, F., Trojahn, C.: The Alignment API 4.0. J. Sem. Web 2(1), 3–10 (2011)Google Scholar
  9. 9.
    Dowling, W.F., Gallier, J.H.: Linear-Time Algorithms for Testing the Satisfiability of Propositional Horn Formulae. J. Log. Prog. 1(3), 267–284 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Euzenat, J.: Semantic Precision and Recall for Ontology Alignment Evaluation. In: Int’l Joint Conf. on Artif. Intell (IJCAI), pp. 348–353 (2007)Google Scholar
  11. 11.
    Euzenat, J., Meilicke, C., Stuckenschmidt, H., Shvaiko, P., Trojahn, C.: Ontology Alignment Evaluation Initiative: Six Years of Experience. J. Data Sem. 15, 158–192 (2011)CrossRefGoogle Scholar
  12. 12.
    Ferré, S., Rudolph, S.: Advocatus Diaboli - Exploratory Enrichment of Ontologies with Negative Constraints. In: ten Teije, A., Völker, J., Handschuh, S., Stuckenschmidt, H., d’Acquin, M., Nikolov, A., Aussenac-Gilles, N., Hernandez, N. (eds.) EKAW 2012. LNCS (LNAI), vol. 7603, pp. 42–56. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  13. 13.
    Grau, B.C., Dragisic, Z., Eckert, K., et al.: Results of the Ontology Alignment Evaluation Initiative 2013. In: Ontology Matching (OM) (2013)Google Scholar
  14. 14.
    Ivanova, V., Lambrix, P.: A Unified Approach for Aligning Taxonomies and Debugging Taxonomies and their Alignments. In: Cimiano, P., Corcho, O., Presutti, V., Hollink, L., Rudolph, S. (eds.) ESWC 2013. LNCS, vol. 7882, pp. 1–15. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  15. 15.
    Jean-Mary, Y.R., Shironoshita, E.P., Kabuka, M.R.: Ontology Matching With Semantic Verification. J. Web Sem. 7(3), 235–251 (2009)CrossRefGoogle Scholar
  16. 16.
    Jiménez-Ruiz, E., Cuenca Grau, B., Horrocks, I.: On the feasibility of using OWL 2 DL reasoners for ontology matching problems. In: OWL Reasoner Evaluation Workshop (2012)Google Scholar
  17. 17.
    Jiménez-Ruiz, E., Cuenca Grau, B.: LogMap: Logic-based and Scalable Ontology Matching. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011, Part I. LNCS, vol. 7031, pp. 273–288. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  18. 18.
    Jiménez-Ruiz, E., Cuenca Grau, B., Horrocks, I., Berlanga, R.: Ontology integration using mappings: Towards getting the right logical consequences. In: Aroyo, L., et al. (eds.) ESWC 2009. LNCS, vol. 5554, pp. 173–187. Springer, Heidelberg (2009)Google Scholar
  19. 19.
    Jiménez-Ruiz, E., Cuenca Grau, B., Horrocks, I., Berlanga, R.: Logic-based Assessment of the Compatibility of UMLS Ontology Sources. J. Biomed. Semant. 2(suppl. 1), S2 (2011)Google Scholar
  20. 20.
    Jiménez-Ruiz, E., Cuenca Grau, B., Zhou, Y., Horrocks, I.: Large-scale Interactive Ontology Matching: Algorithms and Implementation. In: Eur. Conf. on Artif. Intell. (ECAI) (2012)Google Scholar
  21. 21.
    Jiménez-Ruiz, E., Meilicke, C., Grau, B.C., Horrocks, I.: Evaluating Mapping Repair Systems with Large Biomedical Ontologies. In: Description Logics, pp. 246–257 (2013)Google Scholar
  22. 22.
    Kalyanpur, A., Parsia, B., Horridge, M., Sirin, E.: Finding all justifications of OWL DL entailments. In: Aberer, K., et al. (eds.) ISWC/ASWC 2007. LNCS, vol. 4825, pp. 267–280. Springer, Heidelberg (2007)Google Scholar
  23. 23.
    Kazakov, Y., Krötzsch, M., Simančík, F.: Concurrent Classification of EL Ontologies. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011, Part I. LNCS, vol. 7031, pp. 305–320. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  24. 24.
    Kharlamov, E., et al.: Optique: Towards OBDA Systems for Industry. In: Cimiano, P., Fernández, M., Lopez, V., Schlobach, S., Völker, J. (eds.) ESWC 2013. LNCS, vol. 7955, pp. 125–140. Springer, Heidelberg (2013)Google Scholar
  25. 25.
    Konev, B., Walther, D., Wolter, F.: The Logical Difference Problem for Description Logic Terminologies. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 259–274. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  26. 26.
    Lambrix, P., Dragisic, Z., Ivanova, V.: Get My Pizza Right: Repairing Missing Is-a Relations in \(\cal{ALC}\) Ontologies. In: Takeda, H., Qu, Y., Mizoguchi, R., Kitamura, Y. (eds.) JIST 2012. LNCS, vol. 7774, pp. 17–32. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  27. 27.
    Lambrix, P., Liu, Q.: Debugging the Missing Is-a Structure Within Taxonomies Networked by Partial Reference Alignments. Data Knowl. Eng. (DKE) 86, 179–205 (2013)Google Scholar
  28. 28.
    Mascardi, V., Ancona, D., Barbieri, M., Bordini, R.H., Ricci, A.: CooL-AgentSpeak: Endowing AgentSpeak-DL Agents with Plan Exchange and Ontology Services. Web Intelligence and Agent Systems 12(1), 83–107 (2014)Google Scholar
  29. 29.
    Meilicke, C.: Alignments Incoherency in Ontology Matching. Ph.D. thesis, University of Mannheim (2011)Google Scholar
  30. 30.
    Meilicke, C., Völker, J., Stuckenschmidt, H.: Learning Disjointness for Debugging Mappings between Lightweight Ontologies. In: Gangemi, A., Euzenat, J. (eds.) EKAW 2008. LNCS (LNAI), vol. 5268, pp. 93–108. Springer, Heidelberg (2008)Google Scholar
  31. 31.
    Melnik, S., Garcia-Molina, H., Rahm, E.: Similarity Flooding: A Versatile Graph Matching Algorithm and Its Application to Schema Matching. In: IEEE Int’l Conf. on Data Eng. (2002)Google Scholar
  32. 32.
    Motik, B., Shearer, R., Horrocks, I.: Hypertableau Reasoning for Description Logics. J. Artif. Intell. Res (JAIR) 36, 165–228 (2009)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Nebot, V., Berlanga, R.: Efficient Retrieval of Ontology Fragments Using an Interval Labeling Scheme. Inf. Sci. 179(24), 4151–4173 (2009)CrossRefGoogle Scholar
  34. 34.
    Ngo, D., Bellahsene, Z.: YAM++: A Multi-strategy Based Approach for Ontology Matching Task. In: ten Teije, A., Völker, J., Handschuh, S., Stuckenschmidt, H., d’Acquin, M., Nikolov, A., Aussenac-Gilles, N., Hernandez, N. (eds.) EKAW 2012. LNCS, vol. 7603, pp. 421–425. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  35. 35.
    Pesquita, C., Faria, D., Santos, E., Couto, F.M.: To repair or not to repair: reconciling correctness and coherence in ontology reference alignments. In: Ontology Matching (OM) (2013)Google Scholar
  36. 36.
    Reiter, R.: A Theory of Diagnosis from First Principles. Artif. Intell. 32(1) (1987)Google Scholar
  37. 37.
    Santos, E., Faria, D., Pesquita, C., Couto, F.: Ontology Alignment Repair Through Modularization and Confidence-based Heuristics. arXiv:1307.5322 preprint (2013)Google Scholar
  38. 38.
    Schlobach, S.: Debugging and Semantic Clarification by Pinpointing. In: Gómez-Pérez, A., Euzenat, J. (eds.) ESWC 2005. LNCS, vol. 3532, pp. 226–240. Springer, Heidelberg (2005)Google Scholar
  39. 39.
    Schlobach, S., Cornet, R.: Non-standard Reasoning Services for the Debugging of Description Logic Terminologies. In: Int’l Joint Conf. on Artif. Intell. (IJCAI), pp. 355–362 (2003)Google Scholar
  40. 40.
    Shvaiko, P., Euzenat, J.: Ontology Matching: State of the Art and Future Challenges. IEEE Transactions on Knowl. and Data Eng. (TKDE) (2012)Google Scholar
  41. 41.
    Skjæveland, M.G., Lian, E.H., Horrocks, I.: Publishing the Norwegian Petroleum Directorate’s FactPages as Semantic Web Data. In: Alani, H., et al. (eds.) ISWC 2013, Part II. LNCS, vol. 8219, pp. 162–177. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  42. 42.
    Soylu, A., Skjæveland, M.G., Giese, M., Horrocks, I., Jimenez-Ruiz, E., Kharlamov, E., Zheleznyakov, D.: A Preliminary Approach on Ontology-Based Visual Query Formulation for Big Data. In: Garoufallou, E., Greenberg, J. (eds.) MTSR 2013. CCIS, vol. 390, pp. 201–212. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  43. 43.
    Suntisrivaraporn, B., Qi, G., Ji, Q., Haase, P.: A Modularization-Based Approach to Finding All Justifications for OWL DL Entailments. In: Domingue, J., Anutariya, C. (eds.) ASWC 2008. LNCS, vol. 5367, pp. 1–15. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  44. 44.
    Tian, A., Sequeda, J.F., Miranker, D.P.: QODI: Query as Context in Automatic Data Integration. In: Alani, H., et al. (eds.) ISWC 2013, Part I. LNCS, vol. 8218, pp. 624–639. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  45. 45.
    Völker, J., Vrandečić, D., Sure, Y., Hotho, A.: Learning Disjointness. In: Franconi, E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519, pp. 175–189. Springer, Heidelberg (2007)Google Scholar
  46. 46.
    Šváb, O., Svátek, V., Berka, P., Rak, D., Tomášek, P.: OntoFarm: Towards an Experimental Collection of Parallel Ontologies. In: Int’l Sem. Web Conf. (ISWC). Poster Session (2005)Google Scholar
  47. 47.
    Wang, P., Xu, B.: Debugging Ontology Mappings: A Static Approach. Computing and Informatics 27(1), 21–36 (2012)Google Scholar
  48. 48.
    Zhang, S., Mork, P., Bodenreider, O.: Lessons Learned from Aligning two Representations of Anatomy. In: Int’l Conf. on Principles of Knowl. Repr. and Reasoning (KR) (2004)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Alessandro Solimando
    • 1
  • Ernesto Jiménez-Ruiz
    • 2
  • Giovanna Guerrini
    • 1
  1. 1.Dipartimento di InformaticaUniversità di GenovaItaly
  2. 2.Department of Computer ScienceUniversity of OxfordUK

Personalised recommendations